
WISDOM
Programma di ricerca (cofinanziato dal MIUR, esercizio 2004)

Ricerca Intelligente su Web basata su Ontologie di Dominio
Web Intelligent Search based on DOMain ontologies

Critical analysis of query languages and
ontology-based query rewriting

techniques

M. Golfarelli, F. Mandreoli, R. Martoglia, A. Proli, S. Rizzi, P. Tiberio

D3.R1 17 giugno 2005

Sommario

In order to achieve the ultimate goal of the WISDOM project, i.e. to develop intelligent tech-
niques and tools, based on domain ontologies, performing effective and efficient information
search on the WEB, suitable solutions have to be employed in order to express and process
queries in the heterogeneous/distributed ontologies scenario and to present the obtained results
to the user. To this end, in this report we will perform a critical analysis of the main query
languages for XML and for the Semantic Web, which may be used as a good basis for sup-
porting the querying needs of the Wisdom project. Then, we will provide an analysis of the
approximate query answering issue, which is central in Wisdom, examining available structural
query rewriting techniques which were proposed and developed for searching in heterogeneous
XML document bases or in distributed peer data management systems involving ontology data.
Finally we will provide an evaluation of the currently available tools involving the knowledge
presentation aspect.

Tema Tema 3: Elaborazione di interrogazioni

Codice D3.R1

Data 17 giugno 2005

Tipo di prodotto Rapporto tecnico

Numero di pagine 34

Unità responsabile MO

Unità coinvolte MO, TN, BO

Autori M. Golfarelli, F. Mandreoli, R. Martoglia, A. Proli, S. Rizzi, P.
Tiberio

Autore da contattare Federica Mandreoli, mandreoli.federica@unimo.it

Critical analysis of query languages and ontology-based query

rewriting techniques

M. Golfarelli, F. Mandreoli, R. Martoglia, A. Proli, S. Rizzi, P. Tiberio

17 giugno 2005

Abstract

In order to achieve the ultimate goal of the WISDOM project, i.e. to develop intelligent
techniques and tools, based on domain ontologies, performing effective and efficient infor-
mation search on the WEB, suitable solutions have to be employed in order to express and
process queries in the heterogeneous/distributed ontologies scenario and to present the ob-
tained results to the user. To this end, in this report we will perform a critical analysis of the
main query languages for XML and for the Semantic Web, which may be used as a good basis
for supporting the querying needs of the Wisdom project. Then, we will provide an analysis
of the approximate query answering issue, which is central in Wisdom, examining available
structural query rewriting techniques which were proposed and developed for searching in
heterogeneous XML document bases or in distributed peer data management systems in-
volving ontology data. Finally we will provide an evaluation of the currently available tools
involving the knowledge presentation aspect.

1 Introduction

In recent years, the constant integration and enhancements in computational resources and
telecommunications, along with the considerable drop in digitizing costs, have fostered an enor-
mous increase of data and services available on the Web. In such a sea of electronic information,
the user can easily get lost in her/his struggle to find the information (s)he requires. This
problem requires the development of novel tools for the integration, the localization and the
customizable fruition of informative resources and, in particular, of systems that overcome the
“information overloading” problem of traditional search engines.

Indeed, the goal of the WISDOM project is to develop intelligent techniques and tools, based
on domain ontologies, to perform effective and efficient information search on the WEB. In order
to achieve this goal suitable solutions have to be employed in order to express and process queries
in the heterogeneous/distributed ontologies scenario and present their results. Specifically, the
following points are fundamental:

• to adopt / devise an expressive enough query language, carefully analysing the features of
the ones which are available for querying XML Data and of the most promising Semantic
Web Languages;

• to define effective techniques for automatic query rewriting which, by exploiting the infor-
mation on the semantics of the single concepts described in the reference ontologies and
the context where they are placed, reformulate the query against the other ontologies in a
form that closely matched the original one;

• to develop methods that allow the result to be interactively navigated, according to the
abstraction levels offered by ontologies.

1

In order to facilitate these precise goals, in this report we will first (Section 2) perform a
critical analysis of the main query languages for XML, in particular the XQuery one, and the
ones for the Semantic Web, which may be used as a good basis for supporting the querying needs
of the Wisdom project. Then, since the large power and flexibility of structural query languages
give rise to several issues in effectively solving the query answering problem, in Section 3 we
will first give an overview of the problem of structural query matching evaluation, then we will
deepen the analysis of approximate query answering, which is a central issue in the Wisdom sce-
nario. In particular, we will analyze available structural query rewriting techniques which were
proposed and developed for searching in heterogeneous XML document bases or in distributed
peer data management systems involving ontology data. Finally, in Section 4 we will evaluate
the currently available tools involving the knowledge presentation aspect. Indeed, research in
knowledge presentation has recently led to the development of several visual languages, user
interaction paradigms and corresponding tools whose features have to be analyzed in order to
fully achieve the Wisdom goals also from the points of view of information representation and
user interaction.

2 Query Languages for XML and the Semantic Web

We present in this section a short survey of the main query languages for XML and the Semantic
Web. These languages, and in particular the XQuery one, may be used as a good basis for
supporting the querying needs of the Wisdom project. In particular, we present the XQuery
language (subsection 2.1), which is the major candidate standard for querying XML Data, and
the most promising Semantic Web Languages, namely RQL (subsection 2.2), RDQL (subsection
2.3), OWL-QL (subsection 2.4) and SWQL (subsection 2.5).

2.1 XQuery

Extensible Markup Language (XML) [14] has quickly become the de facto standard for data
exchange and for heterogeneous data representation over the Internet. Consider, for instance,
the Digital Libraries context. In recent years, the constant integration and enhancements in
computational resources and telecommunications, along with the considerable drop in digitizing
costs, have fostered development of such systems, which are able to electronically store, access
and diffuse via the Web a large number of digital documents and multimedia data. Digital
Libraries more and more often collect documents coming from different sources, usually available
on the web. Such documents are heterogeneous for what concerns their representation structures
their but are related concerning the contents they deal with. XML is considered the format of
choice for the exchange of information in this field and, more generally, among most applications
on the Internet, due mainly to its flexibility for representing merely any information as well
as metadata for any kind of digital objects. Along with XML, languages for querying XML
documents are becoming more and more popular. In fact, given those premises, it is natural
that queries among applications should be expressed as queries against data in XML format.
Among the several standard query languages proposed in recent years, XQuery [29, 18], currently
a W3C working draft, is one of the most promising forthcoming standards.

XQuery, which has been influenced by most of the previous XML query languages, is a
language for querying XML data. XQuery derives from Quilt, which, in turn, was inspired
and took several characteristics from a number of other XML query languages, such as XQL
and XML-QL, and even from relational data query languages, such as SQL and OQL. One
of the starting points for the design of XQuery was the fact that XML data is very different
from relational data: While the latter tend to have a regular and “flat” structure, the former
often contain many levels of nested elements. Moreover, relational data are generally unordered
and are usually “dense” (nearly every field of a relation has a value), while XML documents

2

have an intrinsic order and are often “sparse”, representing missing information simply by the
absence of an element. XQuery is designed in order to exploit such peculiar features in retrieving
and interpreting information from diverse XML data sources. Its design makes it applicable in
structure-based information retrieval found in human-readable XML documents, where it can
be employed to retrieve individual documents, to provide dynamic indexes, to perform context-
sensitive searching, and to generate new documents. Moreover, XQuery may be used in data-
oriented documents, in order to query (virtual) XML representations of databases, to transform
data into new XML representations, and to integrate data from multiple heterogeneous data
sources.

XQuery is very flexible and provides two different syntaxes: One that is optimized for human
writing and understanding, which is the most used and is the one which we will briefly discuss,
and one that is expressed in XML. The language is defined in terms of a data model based
on heterogeneous sequences of nodes and atomic values, and is functional, consisting of several
types of expressions (path expressions, element constructors, function calls, arithmetic and
logical expressions, conditional expressions, quantified expressions, and so on). The different
kinds of expressions can be combined, resulting in even more powerful expressions. A query
provides a mapping from one instance of the data model to another instance of the data model.
A library of predefined functions [26] is provided, and users are also allowed to define functions
of their own.

The XQuery data model [27] is based on that of XPath and treats each XML document as a
tree of nodes. A sequence is an ordered collection of zero or more items. An item may be a node
(element, attribute, text, document, comment, and so on) or an atomic value such as a string,
an integer, a date or any of the built-in data types. A node may have other nodes as children,
thus forming one or more node hierarchies. Among all the nodes in a hierarchy there is a total
ordering called document order, in which each node appears before its children. Input XML
documents can be transformed into the query data model by a process called schema validation,
which parses the document, validates it against a particular schema, and represents it as a
hierarchy of nodes and atomic values, labeled with type information derived from the schema. If
an input document does not have a schema, it is validated against a default schema. The result
of a query may be transformed from the query data model back into an XML representation by
a process called serialization.

XQuery has several kinds of expressions. The simplest ones are literals, which represent
atomic values, and variables, names that begin with a dollar sign and that may be bound to a
value or used to represent a value. Among the most important expressions are path expressions,
which are based on the syntax of XPath. A path expression consists of a series of steps, separated
by the slash character (“/”). Each step is evaluated in the context of a particular node, called
the context node. The result of each step is a sequence of nodes and the value of the path
expression is the node sequence that results from the last step in the path. As a path expression
is evaluated, the nodes selected by each step serve in turn as context nodes for the following step.
For example, the path expression cd/singer selects the singer elements, which are children of
the cd elements. Further, predicates can be used to filter the elements retrieved in each step,
e.g. cd[name=’’Ultra’’]/singer, and different axes can be employed in order to decide the
direction of the data tree traversal (the default direction is from the parent node to its child).

Even more powerful than path expressions are FLWOR (pronounced “flower”) expressions,
which are the analogue of the SELECT-FROM-WHERE construction in SQL. FLWOR expres-
sions form the skeleton of a standard XQuery expression. A for clause generates an ordered list
of bindings, introducing a variable, let associates further bindings, where filters the retrieved
element list (which is sorted by order by) and return constructs the final result. In its most gen-
eral form, a FLWOR expression may have multiple for clauses, multiple optional let clauses, an
optional where clause, an optional order by clause, and a return clause. FLWOR expressions are
very powerful; they can select existing nodes, as well as construct new elements and attributes

3

and specify their contents and relationships, by means of particular kinds of expressions, the
element constructors. Figure 1 shows an example of a FLWOR expression, selecting the names
of the music stores which have in their stock a cd featuring a particular singer:

for $x in /musicStore
where $x/storage/cd/singer = "Elisa"
return $x/name

Figure 1: A FLWOR expression in XQuery

By means of path, FLWOR and many other expressions offered by the specifications, such
as conditional and quantified ones, XQuery is able to reach a particularly significant level of
flexibility in querying XML data. Still, it is able to maintain a very high level of interoperability
among different systems: For instance, any user interface that generates a query in XQuery is
able to access any system, such as a digital library one, supporting such a language. Among
the other strengths of XQuery are the following: It is completely general (other query languages
are often too specific) and therefore broadly applicable, easily understood, and fully integrated
with the other XML languages and standards, such as XML Schema and XPath.

2.2 RQL

RQL [40] is a query language adapting the functionality of semi-structured and XML query
languages to the peculiarities of RDF. This functionality is extended in order to uniformly
query both RDF descriptions and schemas. RQL is a typed language that follows a functional
a-la OQL [17] approach and relies on a formal graph model that permits the interpretation of
superimposed resource descriptions created using one or more RDF schemas. RQL is defined
by a set of basic queries and iterators, which form the building blocks for defining new queries
through functional composition. RQL supports generalized path expressions featuring variables
on labels for both nodes (i.e. classes) and edges (i.e. properties). RQL queries can be classified
in the following categories:

• Basic (Core) Queries. The core RQL queries essentially provide the means to access
RDF description bases with minimal knowledge of the employed schemas, thus allowing
the implementation of a simple browsing interface for RDF description bases. The basic
RQL queries allow retrieving the contents of any collection with RDF data or schema
information. RQL provides a select-from-where filter to iterate over these collections and
introduce variables. Path expressions can be used in RQL filters to traverse RDF graphs
at arbitrary depths. The basic RQL query functionality includes:

– Accessing Classes and Properties. Access to classes and properties using their
names is provided.

– Class Hierarchy Traversal. Class hierarchies may be traversed using either the
subClassOf function, which returns the transitive subclasses of a class, or the subClassOf^
function, which returns the direct subclasses of a class.

– Property Hierarchy Traversal. Property hierarchies may be traversed using either
the subPropertyOf function, which returns the transitive subproperties of a property,
or the subPropertyOf^ function, which returns the direct subproperties of a property.

– Property Definition. Property definition features may be accessed using appropri-
ate functions: The domain function returns the classes in the domain of which the
property in question is defined, while the range function returns the range of the
property (e.g. integers between 1 and 10).

4

– Schema Queries. Simple schema querying capabilities, using appropriate meta-
classes are provided at the core level. The default metaclasses provided are the
Class and Property metaclasses.

– Set Operators. The union, intersection and minus functions provide the func-
tionality of the basic set operators.

– Sequences. Access to sequence members is provided through the [] operator.

– Boolean Operators. The basic boolean operators >, <, = and like are provided.

– Aggregate Functions. The common aggregation functions min, max, avg, sum and
count are provided.

• Schema Queries. The schema querying facilities allow querying RDF schemas, regardless
of any underlying instances. RQL extends the notion of generalized path expressions to
entire class (or property) inheritance paths, in order to implement schema browsing or
filtering using appropriate conditions. The {} notation is used to introduce appropriate
schema or data variables. Class variables are prefixed by $ and range by default over
the extent of the RDF metaclass Class, which contains all the classes. Using the above
facilities the natural language query “Which classes can appear as domain and range of
the name property?” is expressed in RQL as shown in Figure 2.

select $C1 $C2 from {$C1}name{$C2}

Figure 2: The query “Which classes can appear as domain and range of the name property?” in
RQL

Property variables are prefixed by @ and range by default over the extent of the built n
Property metaclass, containing all the properties. Thus, the natural language query “Find all
properties that are applicable on class Person, as well as the property ranges” is expressed in
RQL as shown in Figure 3.

select @P, range{@P}
from {$C}@P
where $C=Person

Figure 3: The query “Find all properties that are applicable on class Person, as well as the
property ranges” in RQL

The . (dot) notation is used to introduce join conditions between the left and the right part
of a path expression, depending on the type of each path component.

• Data Queries. They allow using generalized path expressions in order to navigate and
filter RDF description bases without taking into account the domain and range restrictions.
As an example, the natural language query “Find all the Library resources published after
2000” is expressed in RQL as shown in Figure 4.

select X, Y
from Library{X}.published{Y}
where Y>=2001-01-01

Figure 4: The query “Find all the Library resources published after 2000” in RQL

5

• Combinations of Schema and Data Queries. Queries combining both schema and
data querying allow to start querying resources according to one schema, while discovering
in the sequel how the same resources are described using other schemas. As an example,
the natural language query “Find the description – under the form of triples – of resources
excluding properties related to the class Person” is expressed in RQL as shown in Figure
5.

((select X, @P, Y from {X}@P{Y})
union
(select X, type, $W from $W{X}))
minus
((select X, @P, Y from {X;Person}@P{Y})
union
(select X, type, Person from Person{X}))

Figure 5: The query “Find the description – under the form of triples – of resources excluding
properties related to the class Person” in RQL

RQL has been used as the query interpreter of the RSSDB [9] persistent RDF Store, which
is implemented on top of the PostgreSQL Object Relational DBMS (ORDBMS). In addition, a
full-fledged view definition language, the RVL [44] language, has been developed based on RQL.
An RDF Triggering Language, namely RDFTL [51], has also been developed on top of RQL.

2.3 RDQL

The RDQL (RDF Data Query Language) [56, 55] is an SQL-like language developed in the
HP Labs and has been used in several RDF [34] systems for extracting information from RDF
metadata repositories. RDQL is “data-oriented”, as there is no inference done: with RDQL
only the information held in the RDF models is queried. As RDF models are essentially graphs,
often expressed as a set of triples, an RDQL query consists of:

• A graph pattern, expressed as a list of triple patterns. Each triple pattern is comprised of
named variables and RDF values (URIs and literals).

• An optional set of constraints on the values of the named variables.

• An optional list of the variables required in the answer set.

An RDQL query treats an RDF graph purely as data. If the implementation of the graph
provides inferencing to appear as “virtual triples” (i.e. triples that appear in the graph but are
not in the ground facts) then those triples will be included as possible matches in triple patterns.
RDQL makes no distinction between inferred triples and ground triples.

An example of an RDQL query is given in Figure 6. In the query of Figure 6, the query result
is comprised of the resources found in http://example.org/someWebPage, with age=24. Age is
structured according to the definition found in http://example.org/peopleInfo#, represented
by the “info” namespace.

2.4 OWL-QL

The OWL Query Language (OWL-QL) [31] is a prototypical formal language and protocol
to be used in query-answering dialogues between a querying agent (client) and an answering
agent (server). The underlying knowledge should be represented in the Ontology Web Language

6

SELECT ?resource
FROM http://example.org/someWebPage
WHERE (?resource info:age ?age)
AND ?age = 24
USING info FOR http://example.org/peopleInfo#

Figure 6: An RDQL Query

(OWL) [46]. OWL-QL is easily adaptable to other declarative formal logic representation lan-
guages, including first-order logic languages such as KIF and the earlier W3C languages, RDF,
RDF-S, and DAML+OIL.

In a query-answering dialogue, answers are delivered by the server in answer bundles. The
client may specify, setting an answer bundle size bound for each query, the maximum number of
answers in each bundle. The server is then required to deliver an answer bundle containing at
most the number of query answers given by the answer bundle size bound. In addition, an answer
bundle must contain either a process handle or one or more character strings called termination
tokens. The presence of a process handle in an answer bundle represents a commitment by the
server to deliver another answer bundle if more answers to the query are requested by the client,
while the presence of a termination token in an answer bundle indicates that the server will not
deliver any more answers to the query. OWL-QL specifies three termination tokens:

• “End”. It indicates that the server is unable to deliver any more answers and is used to
terminate the process of responding to a query.

• “None”. It expresses a server assertion that no other answers are possible.

• “Rejected”. It is used by the server to indicate that the query is outside its scope for
some reason, e.g., it is ill-formed or it uses a subset of the language the server is unable to
process.

A client may request additional answers to a query by sending the server a server continu-
ation containing the process handle provided by the server in the previously produced answer
bundle. Upon receiving a server continuation, the server is expected to respond by sending to
the requesting client another answer bundle. The dialogue is terminated when the client sends
a server termination containing the process handle provided by the server in the previously
produced answer bundle. The structure of an OWL-QL query-answering dialogue is illustrated
in Figure 7.

Figure 7: OWL-QL Query-Answering Dialogue

7

An OWL-QL query is an object containing a query pattern1 that specifies a collection of
OWL sentences in which some URIrefs are considered to be variables. The variable notion does
not exist in OWL, thus an OWL-QL query pattern is simply an OWL knowledge base, and a
query specifies which URI references in its query pattern are to be considered to be variables.
For example, a client could ask “Who owns a black car?” with a query having the query pattern
shown in Figure 8.

Query: (‘‘Who owns a black car?’’)
Query Pattern: {(owns ?p ?c) (type ?c Car) (has-color ?c Black)}
Must-Bind Variables List: (?p)
May-Bind Variables List: ()
Don’t-Bind Variables List: ()
Answer: (‘‘Matt owns a black car?’’)
Answer Pattern Instance: {(owns Matt ‘‘a black car’’)}

Figure 8: A sample Query-Answer in OWL-QL

OWL-QL enables the client to designate some of the query variables for which answers will
be accepted with or without bindings in order to support existentially quantified answers. Thus,
each variable occurring in an OWL-QL query is considered to be a must-bind variable, a may-bind
variable, or a don’t-bind variable. Answers must provide bindings for all the must-bind variables,
may provide bindings for any of the may-bind variables and should not provide bindings for any
of the don’t-bind variables. These designations are made by including a must-bind variables list,
a may-bind variables list and a don’t-bind variable list in an OWL-QL query. These lists contain
URI references occurring in the query, while no URI reference can be an item of more than one
of these lists. Consider a query with the query pattern “{(hasMother ?p ?m)}”, meaning “?p
has mother ?m”, and the following cases:

• ?m is a don’t-bind variable: The complete set of query answers contains one answer
for each known person that identifies a person but not the person’s mother.

• ?m is a must-bind variable: The complete set of query answers contains one answer
for each known mother that identifies both a person and the person’s mother.

• ?m is a may-bind variable: The complete set of non-redundant query answers contains
one answer for each known person that identifies a person, while the person’s mother is
identified only when the mother is known.

The original query corresponding to the query pattern of Figure 8, as posed by the querying
client with an answer bundle size bound of 5 an the ?p variable, that represents the black car
owners, considered as a must-bind variable is shown in Figure 9.

A query may have zero or more answers, each of which provides bindings of URIrefs or literals
to some of the variables in the query pattern. Each binding in a query answer is a URIref or a
literal that either explicitly occurs as a term in the answer or is a term in OWL. A variable that
has a binding in a query answer is identified in that query answer. The answer “Matt owns a
black car.”, as sent by the answering server to the query of Figure 9 is shown in Figure 10.

2.5 SWQL

The Semantic Web Query Language (SWQL) [42, 28], (pronounced ‘swequel’) serves to query
all kinds of data that occur within the Semantic Web, namely RDF [34] and XML. Furthermore,

1A query pattern is represented as a set of triples of the form (<property> <subject> <object>), where any
item in the triple can be a variable. Variables are shown as names beginning with the character “?”.

8

<owl-ql:query xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">
<owl-ql:queryPattern>
<rdf:RDF>
<rdf:Description rdf:about="http://www.w3.org/2003/10/owl-ql- variables#p">
<owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
</rdf:Description>
<Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">
<has-color rdf:resource="#Black"/>
</Car>
</rdf:RDF>
</owl-ql:queryPattern>
<owl-ql:mustBindVars>
<var:p/>
</owl-ql:mustBindVars>
<owl-ql:answerKBPattern>
<owl-ql:kbRef rdf:resource="http://chrisadata/chrisa.owl"/>
</owl-ql:answerKBPattern>
<owl-ql:answerSizeBound>5</owl-ql:answerSizeBound>
</owl-ql:query>

Figure 9: The Query posed by the querying client

it keeps the concrete data types and syntax transparent to the user by only relying onto the
RDFS/OWL [46, 15], ontology vocabulary.

SWQL could be of great value in the emerging Semantic Web, where the same kind of
information is represented in different syntactic forms, being either incompatible (XML or RDF)
schemas or XML versus RDF. SWQL keeps these syntactic differences transparent to the user,
so that the same query will work on both RDF and XML data, even with different schemas.

The syntax of SWQL is based on XQuery, but the underlying semantics are significantly
changed. The main difference is the new data model. The SWQL data model is based on a
graph structure and is therefore very similar to the RDF data model.

Another feature changed in SWQL is the path language. A new path language, SWQLPath,
has been defined. SWQLPath is very similar to XPath [12] regarding steps and filters, but uses
different tests. It is also capable of navigating through the data model and selecting objects out
of it. The example path expression shown in Figure 11 selects the titles of all the resources that
are exhibited:

The two main constructs in SWQLPath are the so-called NodeTests and PropertyTests.
NodeTests filter a set of nodes for being an instance of a given OWL class. PropertyTests are
used for navigation via the edges of the graph. They check if any node in a set of current
nodes has a property that is an instance of the given property type and if yes, they return the
corresponding node in the range of the property. As in XPath, SWQLPath supports also the
so-called Predicates. Predicates filter a set of nodes based on some condition.

Besides path expressions, most XQuery expressions are also available in SWQL, namely
FLWOR expressions, conditional (if-then-else) expressions, existential and universal quantifica-
tion, user-defined functions, type switches and casts.

The third feature that is changed in SWQL with respect to XQuery is the type system.
SWQL uses a completely new type system that is based on the emerging OWL standard. This
type system is used to formulate syntax-independent queries by only checking type relationships
with an inference system.

In the following, we will focus on the SWQL type system and the SWQL data model.

9

<owl-ql:answerBundle xmlns:owl-ql=http://www.w3.org/2003/10/owl-ql-syntax#
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">
<owl-ql:queryPattern>
<rdf:RDF>

<rdf:Description rdf:about="http://www.w3.org/2003/10/owl-ql-variables#p">
<owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
</rdf:Description>
<Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">
<has-color rdf:resource="#Black"/>
</Car>
</rdf:RDF>
</owl-ql:queryPattern>
<owl-ql:answer>
<owl-ql:binding-set>
<var:p rdf:resource="#Chrisa"/>
</owl-ql:binding-set>
<owl-ql:answerPatternInstance>
<rdf:RDF>
<rdf:Description rdf:about="#Chrisa">
<owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
</rdf:Description>
<Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">
<has-color rdf:resource="#Black"/>
</Car>
</rdf:RDF>
</owl-ql:answerPatternInstance>
</owl-ql:answer>
<owl-ql:continuation>
<owl-ql:none/>
</owl-ql:continuation>
</owl-ql:answerBundle>

Figure 10: The Answer returned by the answering server for the OWL-QL query of Figure 9

2.5.1 Type System

The type system of SWQL is based on OWL. This means that all queries are posed in terms of
an implicit or explicit given ontology. Every class or property defined in such an ontology has
a unique qualified name. These names are used in the query to refer to the corresponding class
or property.

There is one function defined for class and property names, the “subsumes” function that
checks for subsumption of two classes or two properties. In the example of Figure 12, if class1
subsumes class2 the “subsumes” function returns true, otherwise false.

2.5.2 Data Model

OWL assumes a graph-based data model as opposed to the tree-based data model of XQuery.
The formal definition of the data model for OWL instances as used by SWQL, according to
Figure 13, is as follows: All the parts of a graph are called items. Items are either nodes or
properties. A node is either an object or a literal. Every Item of a graph has an associated
type from the OWL ontology. The “type” function returns this associated type as a qualified
name as defined in XML Schema. Every Property connects two nodes. The “domain” of a

10

Resource()/exhibited/title

Figure 11: Example SWQL Path Expression

subsumes($class1 as xs:QName, $class2 as xs:QName) as xs:Boolean

Figure 12: Subsumption Example

Property is always an Object, the “range” can be any Node. All nodes in a graph may have
Properties that can be returned by the “toProperties” function. For Literals this set is always
non-empty. All Objects may have Properties that can be returned by the “fromProperties”
function. Every Literal has a value, which is an atomic type as defined in the XQuery 1.0 and
XPath 2.0 specifications. Finally, the function “all” returns a set of all the Nodes existing in
the graph.

Figure 13: The SQWL Data Model

3 Query answering techniques

The large power and flexibility of the query languages we analyzed in the previous section
give rise to several research issues in effectively solving the query answering problem. In this
section we will first give an overview of the problem of structural query matching evaluation,
then we will deepen the analysis of approximate query answering, which is a central issue in
the Wisdom scenario. In particular, in this context, we will analyze available structural query
rewriting techniques which were proposed and developed in peer data management systems
involving ontology data but also in systems managing heterogeneous XML document bases; such
techniques could be fruitfully adapted to the complex architecture of heterogeneous/distributed
ontologies of Wisdom.

3.1 Exact versus approximate query answering

Differently from standard text retrieval queries, queries submitted to structure-aware search
engines have to match the data (ontologies or simple XML documents) not only in their contents

11

(semantics) but also in their structure (the tree or, generally, graph describing the particular
nesting of the elements). Such a match can either be exact or approximate.

As far as exact matching is concerned, the goal of evaluating tree pattern queries, such as
the ones expressed in XQuery, sometimes called the twig queries, is to find all existing ways
of embedding the pattern in the data. Since XML data collections can be very large, exten-
sive research is currently being done in devising efficient evaluation techniques for tree pattern
matching. Though XML data objects and queries are ordered labeled trees (ordered tree match-
ing), in the majority of situations the user would prefer to consider query trees as unordered.
In general, the process of unordered tree matching is difficult and time consuming. For example,
the edit distance on unordered trees was proven NP hard in [63]. To improve efficiency, an
approximate searching for nearest neighbors, called ATreeGrep, was proposed in [57]. However,
the problem of unordered twig pattern matching in XML data collections has been studied only
very recently. In [62], an efficient evaluation strategy for unordered tree matching is presented,
exploiting the tree signature approach [61], which has originally been proposed for the ordered
tree matching.

Exact matching strategies are important in order to answer queries expressed in query lan-
guages such as XQuery, however they alone are obviously insufficient to provide effective query
answering to users in the complex architecture of heterogeneous/distributed ontologies of Wis-
dom. Indeed, the features of those languages allow for structural inquiries and introduce a
significant complexity in the querying process. A user does not know the exact structure and
concepts of all the available ontologies. Moreover, similar concepts coming from different sources
typically use completely different structures and names. For all these reasons, it is necessary
to go beyond exact matches and to consider techniques which are able to solve the complex
problem of approximate matching (approximate query answering), where the approximation has
to involve both the structure and the contents of the ontologies.

Recently, several research efforts focus on the problem of approximate query answering in
a distributed ontology scenario or, even more typically, in a conceptually similar heterogeneous
XML document repository one. Much research has been done on the instance level, trying
to reduce the approximate structural query evaluation problem to well-known unordered tree
inclusion [54] or tree edit distance [36] problems directly on the data trees. However, the compu-
tational complexity of such approaches is nearly prohibitive for a realistic implementation. On
the other hand, a large number of approaches prefer to address the problem of approximation
and structural heterogeneity by first trying to solve the differences and discover correspondences
between the ontologies / schemas on which data are based. Schema matching has been the
focus of work since the 1970s in the AI, DB and knowledge representation communities and
many algorithms and systems have been proposed, such as Similarity Flooding (SF) [35], pro-
viding particularly versatile graph matching algorithms. After having discovered the similarities
between the schemas, it is possible to exploit the discovered correspondences in order to perform
the operation of query rewriting (also known as query reformulation), which also in the Wisdom
framework has a basilar importance and to which the following section is dedicated.

3.2 Query rewriting

In the query rewriting operation the submitted query is automatically “approximated” and
rewritten in order to be compliant with all the available data. Query rewriting has been suc-
cessfully exploited in several situations, in particular for improving the effectiveness of search
engines querying distributed and heterogeneous data. Some of the techniques we describe in
this section have not been originally conceived for working with ontology data but with het-
erogeneous XML document repositories, while others were conceived in a distributed peer data
management systems setting involving ontology data. However, in any case, all such techniques
are general and independent from the underlying matching discovery ones. Their only require-

12

ment is the availability of the correspondences between the schemas / ontologies. In Wisdom,
the semantic mappings among the ontologies will be extracted by means of ad-hoc techniques
and, thus, will constitute an optimal starting point for applying such existing query rewriting
techniques. Indeed, with little changes, these techniques could be exploitable for rewriting the
queries posed in the Wisdom project, originally expressed with reference to a local ontology,
and could possibly be improved in order to exploit the full potential and expressiveness of the
extracted semantic mappings.

3.2.1 The XML S3MART approach

In [52, 45] a novel approach for query rewriting (and schema matching) has been proposed
in order to solve the problem of effective and efficient search, by means of XQuery queries,
among large numbers of “related” XML documents. The implementing system is named XML
S3MART (XML Semantic Structural Schema Matcher for Automatic query RewriTing) and its
functionalities have been succesfully exploited in enhancing search effectiveness in heterogeneous
XML document bases.

The approach relies on the information about the structure of the available XML documents.
Due to the intrinsic nature of the semi-structured data, all such documents can be useful to
answer the query only if, though being different, the schemas of the involved documents share
meaningful similarities, both structural (similar structure of the underlying XML tree) and
semantic (employed terms have similar meanings). For instance, the XML document shown in
Figure 14 would clearly be useful to answer the FLWOR query of Figure 1. However, since its
structure and element names are different from the ones assumed in the FLWOR expression,
it would not be returned by a standard XQuery search engine. The schema matching process

<cdStore>
<name>Music World Shop</name>
<cd>
<vocalist>Elisa</vocalist>
<cdTitle>Then comes the sun</cdTitle>
</cd>
...
</cdStore>

Figure 14: XML Document that could not be processed using the FLWOR expression of Figure
1, although it is semantically relevant

proposed in [52, 45], extracts the similarities between the elements, which are then exploited in
the proper query processing phase where the rewriting of the submitted queries is performed in
order to make them compatible with the available document structures. The queries produced
by the rewriting phase can thus be issued to a “standard” XML engine. For instance, the XQuery
of Figure 1 can be automatically rewritten as shown in Figure 15, making it fully compatible
with the previously shown document.

for $x in /cdStore
where $x/cd/vocalist = "Elisa"
return $x/name

Figure 15: The FLWOR expression of Figure 1 rewritten to handle the XML document structure
of Figure 14

Matching and rewriting are performed on the actual structure of the XML data, where
elements and attributes are identified by their full paths and have a key role in XQuery FLWOR

13

expression paths. By exploiting the best matches provided by the matching computation, a
given query, written w.r.t. a source schema, can be straightforwardly rewritten on the target
schemas. Each rewrite is assigned a score, in order to allow the ranking of the results retrieved
by the query. The approach supports conjunctive queries with standard variable use, predicates
and wildcards. After having substituted each path in the WHERE and RETURN clauses with the
corresponding full paths and then discarded the variable introduced in the FOR clause, the query
is rewritten for each of the target schemas in the following way:

1. all the full paths in the query are rewritten by using the best matches between the nodes in
the given source schema and target schema (e.g. the path /musicStore/storage/cd/singer
of source schema is automatically rewritten in the corresponding best match, /cdStore/cd/
vocalist of target schema);

2. a variable is reconstructed and inserted in the FOR clause in order to link all the rewritten
paths (its value will be the longest common prefix of the involved paths);

3. a score is assigned to the rewritten query. It is the average of the scores assigned to each
path rewriting which is based on the similarity between the involved nodes, as specified in
the match.

3.2.2 The Piazza PDMS approach

In [60, 37], the authors present a query rewriting (or reformulation, as they call it) technique
in the context of the Peer Data Management System (PDMS) Piazza. In such a scenario every
peer is associated with a schema that represents the peer’s domain of interest, and semantic
relationships between peers are provided locally between pairs (or small sets) of peers. The key
step in query processing in a PDMS is reformulating a peer’s query over other peers on the
available semantic paths. The PDMS starts from the querying peer and reformulates the query
over its immediate neighbors, then over their immediate neighbors, and so on. Whenever the
reformulation reaches a peer that stores data, the appropriate query is posed on that peer, and
additional answers may be found. Since peers typically do not contain complete information
about a domain, any relevant peer may add new answers. Furthermore, different paths to the
same peer may yield different answers.

Peers in a PDMS are linked through peer mappings. Peer mappings in Piazza are described
as query expressions using a subset of XQuery. Figure 16 shows an example of a Piazza mapping.
The mapping defines the relationship between the schema of S2 and the schema of S1; the two
schemas differ in how they represent the advisor/advisee information. Schemas are represented
using a format in which indentation indicates nesting and a * suffix indicates an arbitrary number
of occurrences of the subelement. Two cases are contemplated for reformulation:

• Single-step reformulation: Suppose a query Q is posed over the peer P1. If P1 contains
its own data, then the PDMS first retrieves the answers to Q based on P1’s data. Then,
Q is reformulated on P1’s neighbors and appropriate queries are posed to them, and the
process continues recursively.

• Multi-step reformulation: A PDMS answers queries by chaining individual reformulation
steps. In this way, a PDMS can follow arbitrarily long semantic paths and retrieve answers
from peers not directly connected to the query peer. Given a single-step reformulation
algorithm, a template algorithm for query answering in a PDMS is implemented iteratively
as follows. Suppose that the PDMS includes only pairwise mappings. At every point, a
tree of goals G, each of which is a query on a particular peer, is maintained. Initially, G
includes a single goal with the original query and peer, i.e., (Q,P). At each iteration, one
of the leaf goals (Q’; P’) ∈ G is chosen. First, if P’ contains data, the query Q’ is posed

14

Figure 16: An example pair of peer schemas (left) and a Piazza mapping between them (right)
used for rewriting queries

on the peer P’ and the set of answers is added to the set of answers to Q. Second, Q’ is
reformulated on all the neighbors of P’ and the newly created goals are added to G.

Finally, in [37] many optimizations for the reformulation problem are also proposed, since
following all semantic paths naively may lead to several inefficiencies. The optimizations are
related to:

• Pruning and minimization: algorithms for pruning redundant reformulation nodes and for
minimizing reformulations are proposed.

• Search strategies: since reformulation can be viewed as a search through a space of re-
formulations, the effects of the search strategy on the reformulation time are studied in
detail.

• Pre-computing semantic paths: the authors show that pre-computing certain paths in the
network can offer many benefits, and examine the tradeoffs involved.

3.2.3 The Xyleme approach

Xyleme [19], which stores data from multiple sources in a warehouse, uses an elaborate approach
to discovering and defining mappings, based on path-to-path mappings. The Xyleme query
language is an extension of OQL with path expressions and the full text contains predicate.
Figure 17 shows a sample query that retrieves the titles of van Gogh’s paintings exposed at the
Orsay museum.

A Xyleme view has a domain, a schema and a definition. Everything related to the view
domain is called concrete and everything related to the view itself is called abstract. The domain
of a view is a set of clusters, i.e., a sub- set of Xyleme repository. The structure of the documents
within a cluster is described by DTDs. The view schema is an abstract DTD. It is a tree of
concepts (rather than attributes or elements). A view is defined by a set of pairs < p, p′ >,
called mappings, where p is a path in the abstract DTD and p′ a path in some concrete DTD.
The intuition underlying Xyleme views is that of path-to-path mapping, i.e. a view specifies
mappings between path in the abstract and concrete DTDs. Query Translation is performed in

15

select p/title
from doc in culture,
p in doc/painting,
where p/author contains "van Gogh"
and p/museum contains "Orsay"

Figure 17: An example query in Xyleme

two steps. First, the abstract concepts that are used in the query are selected. For instance,
culture/painting, culture/painting/title, culture/painting/author and culture/painting/museum
in the query of Figure 17. Then, among all the possible ways of combining their associated
concrete paths, only those that (i) form a subtree of some concrete DTD and (ii) preserve
the parent/child relationship of the abstract query are selected. The result is the union of the
concrete queries built from the valid tree combinations. Abstract to Concrete Translation (A2C)
algorithm transforms abstract pattern trees into concrete ones (see Figure 18 for an example).
To compute the translation of a whole tree, it is decomposed in upward paths starting from
each leaf and stopping when a node that has already been visited by a previous upward path is
reached. Once the decomposition has been performed, A2C translates each upward path to a
concrete branch, then it computes concrete pattern trees by combining branch solutions.

Figure 18: An example of abstract to concrete query tree reformulation in Xyleme

3.2.4 Other approaches

Many other query rewriting / reformulation approaches exist in the literature, especially in
a standard relational scenario, which, however, is significantly different from the one of the
Wisdom project. Therefore, in this paragraph we will only present very shortly two of the most
significant of such approaches, from which some basic ideas could nonetheless be borrowed.

In [20] a system called MARS (Mixed And Redundant Storage) for publishing XML data
from mixed (XML+relational) proprietary storage is presented. Client queries, as well as GAV
and LAV views are expressed using the standard XQuery language, and the MARS sustem
is able to find the minimal query reformulations, i.e. the system guarantess that there is no
redundant data source scan. In particular, the navigation part of XQueries is reformulated. In
order to achieve that, MARS uses a compilation of queries, views and constraints from XML
into the relational framework. The compilation reduces the original reformulation problem to a
problem of minimization of relational queries under relational integrity constraints.

The work [50] proposes PeerDB, a P2P-based system for distributed sharing of relational
data. Similar to the Piazza system (see section 3.2.2), PeerDB does not require a global schema
but it does not use schema mappings for mediating between peers. Instead, PeerDB employs
an Information Retrieval based approach for query reformulation. A peer relation (and each of
its columns) is associated with a set of keywords. Given a query over a peer schema, PeerDB
reformulates the query into other peer schemas by matching the keywords associated with the
two schemas.

16

4 Ontology visualization and exploration tools

One of the open research problems in the field of ontology management is to find a well-suited
formalism and a proper user-interaction paradigm giving end-users an intuitive representation
of knowledge and a friendly tool for collecting it.

Intuitive means that the visual language used to graphically represent information must be
able to highlight (an ‘interesting’ part of) its semantics in such a way to make the drawn picture
significant to end-users: the set of graphical objects that could appear in the picture define a
notation that is more direct and easy-to-interpret than the formal definition of the described
entities (usually expressed by means of an abstract syntax), still being capable of unambiguously
expressing their meaning.

Friendly means that the interaction paradigm supplies a few navigation primitives that allow
users to expand their view on a particular knowledge base, in both a conceptual and a graphical
sense, through simple actions performed on the visual encoding of that knowledge. Typically,
each class of user actions (e.g. mouse click, drag & drop, . . .) triggers a different kind of query
on the underlying query engine: independently of their form, answers are then given a visual
rendering users can exploit for further retrieval of new (usually related) information.

Following this pattern, research in the field of knowledge presentation has recently led to the
development of several visual languages, user interaction paradigms and corresponding tools as
a headway to industrial practice; nevertheless, the goal still seems to be far from being reached.
In this section, our investigation has the purpose of reporting results that have originated from
this work by an evaluation of the currently available tools. As each tool is examined under two
different aspects, namely the representation formalism and the user-interaction pattern, for both
we define a set of evaluation criteria according to which a classification scheme is set up.

4.1 Evaluation Criteria

For the evaluation of knowledge presentation tools, it is crucial to recognize that one of the
most challenging research issues in this area consists in finding the optimal trade-off between
the domain-independence of the notation and the expressivity of the visual language.

As the visual language includes more and more expressive constructs, i.e. as the meaning of
those constructs gets more and more precise (and significant to end-users bound to a particular
context), it suffers from an increasingly higher loss of generality; this is due to the fact that a
very expressive graphical notation defines ad hoc representations for a restricted set of entities,
thus becoming tailored to those application domains in which such entities exist. Figure 19
illustrates this situation.

The same consideration applies to navigation primitives: general-purpose presentation tools
would supply end-users with a set of operations such as “view classes”, “view instances”, “hide
subclasses”, “show superclasses”, and so on, thus supporting the exploration of every kind of
knowledge base; instead, dedicated presentation tools tightly bound to any application domain
would associate user actions with more specific queries, like “retrieve written books”, “find
movies”, “get neighbor nations”, and so on.

Intuitively, domain-independent formalisms are more reusable, but represent entities in a way
that is ‘closer’ to the abstract syntax used to formally define them, thus being more difficult
to understand for end-users; on the contrary, domain-specific formalisms have a lower degree of
reusability, but define graphically richer constructs that allow for a representation that is ‘closer’
to how the corresponding entities appear in the described domain (that is, graphical properties
of graphical objects are provided for each conceptual property describing the real-world entities
those objects represent).

As an attempt to retain domain-independence while providing an expressive visual language
for representing knowledge, a shift is currently being registered towards the development of
flexible languages that allow for different notations and user interaction patterns to be selected

17

-

6

Domain-independence

E
xp

re
ss

iv
it
y

Figure 19: Trade-off between domain-independence and expressivity of the visual language

according to the end-user’s needs, profile and context. A very effective form of flexibility is
realized by allowing some parameters to be provided for the instantiation of a generic visual-
ization formalism (for example, a visualization engine that accepts style sheets as formatting
directives). In agreement with the terminology used in [25], we say that knowledge presenta-
tion tools providing such a framework are configurable. The concept of configurability applies
both to representation languages and user interaction patterns: in short, configurable navigation
primitives would allow users to specify which (kind of) query is associated to which (kind of)
action.

As most of the ontology definition languages treat concepts and roles as, respectively, the
equivalent of First Order Logic unary and binary predicates, an ontology can be both graphically
and conceptually understood as a graph where nodes stand for concepts or individuals, while
edges stand for property instances relating pairs of concepts, concepts to individuals, or pairs
of individuals. Consequently, most ontology representation systems offer a graph-based visu-
alization and navigation front-end. However, even when configurable systems would allow for
style sheets to be provided in order to associate custom drawing directives for nodes and edges,
abstractions that populate different application domains (or their most proper representation)
could not always fit in a graph structure: thus, powerful tools for knowledge presentation should
encompass different metaphors for representing such knowledge. We refer to tools providing this
feature as multi-metaphor systems. Notice that not being a multi-metaphor system does not
necessary implies that navigational and representational features are poor: for instance, very
effective visualization techniques exist to make graphs more readable and easy-to-explore, such
as clustering [13], zooming, panning, filtering, force-directed layout of nodes [49], the Graphical
Fisheye views [33], the Rubbersheet views [53], and many others. As we will see in Section 4.2,
configurable graph-based tools can do very well in presenting ontological information.

An interesting feature of multi-metaphor knowledge presentation systems is orthogonality.
A fully orthogonal, multi-metaphor system allows each metaphor (navigation primitives and
graphical constructs) to be selected for rendering and exploring any knowledge base (or any
subset of the same knowledge base). Some non-orthogonal tools, for example, define completely
different formalisms and navigation environments for exploring the schema and the instances
of a given knowledge base. Depending on the peculiarities of the application domain and the
profile of end-users, this could be either an advantage or a drawback: as reported in [25], there
are cases where different parts of the same knowledge base are best represented by means of
different visualization metaphors. In such situations, a multi-metaphor, but still configurable,
system would not suffer from the lack of orthogonality.

In [47], three main user categories are identified as the target of knowledge presentation
tools, namely end-users, Guru users (or knowledge engineers), and developers. End-users are
meant to be people with experience in the domain described by the ontology. The same applies
to Guru users and knowledge engineers, who are additionally supposed to be domain modelers
because of their greater experience on the application domain. Finally, developers are those

18

who cope with implementation details of the knowledge base. Knowledge presentation tools are
often targeted to a subset of those categories: ideally, most flexible tools should encompass all
of these user profiles.

Presentation tools that are mainly addressed at knowledge engineers and ontology devel-
opers must offer additional editing functionalities besides those allowing end-users to navigate
a knowledge base. Related features could be consistency-checking, classification, discovery of
hidden relationships, and so on.

Apart from this, visualization tools could also allow users to manually arrange depicted items
in order to meet some particular visualization criteria or, simply, their taste. Such a feature can
be thought of as a limited, non-semantic editing functionality that aims at improving the user
interface’s usability. We say that such tools support graphical editing.

As to the navigation features provided by knowledge presentation tools, we make a further
distinction between uniform and non-uniform systems: uniform systems adopt the same en-
vironment for displaying both those pieces of information end-users act on when formulating
queries, and query results; conversely, non-uniform tools make use of non-integrated environ-
ments for formulating queries and showing query answers, usually relying on different formalisms
for representing these two kinds of information.

Also, when considering navigational features, we distinguish between semantic browsing and
general query formulation, the former being a special case of the latter. Semantic browsing
consists in exploring a knowledge base by navigating from object to object following property
links or, at most, by formulating queries that are always centered on one (represented) entity.
Instead, general query formulation is meant to be a more powerful (and complex) way of ei-
ther ‘manipulating’ a set of visual objects or typing in textual information (but both kind of
interactions could be used at the same time) to compose low-level queries without requiring a
profound knowledge of implementation details; for example, keyword-based searches fall into
this category.

4.2 Tools

In this section we are going to draw an overview of the existing tools for exploring and visu-
alizing ontological knowledge. Features of such tools are briefly discussed in the corresponding
subsections. In this survey, we do not discuss those interfaces that allow to access and query
knowledge bases without providing any kind of visual abstraction to end-users, since they are
not significant to the WISDOM Project. Examples of such systems are online demos for for-
mulating low-level queries on a repository of ontological knowledge bases and for displaying
answers, usually presented in a very raw form (see, for instance, Sesame [16] for RQL, Inkling
[48] for SquishQL, and Redland [11]).

4.2.1 Thin clients: Ontolingua and Ontosaurus Web GUIs

Web clients for the Ontolingua [30] and Ontosaurus [59] repositories are two examples of rudi-
mental ontology navigation systems providing pure HTML interfaces for exploring a set of
concepts organized in specialization hierarchies (also named taxonomies), together with their
formal definitions. Due to the limitations imposed by both the adoption of a Web interface and
by portability requirements forbidding the use of extensions to the standard HTML language,
the user interface is indeed not very attractive, offers only poor interactivity and does not en-
compass feedback mechanisms that are typical for effective collaborative environments. A more
detailed discussion of the drawbacks of this kind of tools can be found in [21].

Besides its limited support to knowledge visualization, the Ontosaurus Web client allows for
both semantic browsing and editing. A screenshot of the Ontosaurus Web interface is shown in
Figure 20. As can be noticed, the interface is split into several frames: the upper-left and the

19

right frame are almost equivalent and can be used for navigating at the same time two separate
parts of the same taxonomies, or even two unrelated taxonomies.

Figure 20: The Ontosaurus Web client interface

Navigation mainly consists in moving up and down in the specialization hierarchy, and a
“Find Matching Instances” operation is provided to show direct and indirect instances of the
currently selected concept. When instances are shown, a new page is loaded on the left frame
containing a list of instance names. When instance names are clicked, a new form appears
in the right frame reporting a short description, role fillers and classifying concepts for the
selected instance. Thus, abstractions perceived by end-users are those of concept, instance, sub-
class/superclass and role, while the main navigation primitives are show instances with properties
and show types.

The Ontolingua Web client has similar features, and will not be further discussed; Figure
21 illustrates a screenshot of the taxonomy browsing facility provided by Ontolingua’s user
interface.

The Ontosaurus and Ontolingua user interfaces are not configurable, meaning that no pa-
rameters can be specified in order to to highlight the semantics of some domain entities by
changing the appearance of the corresponding displayed item. However, their general-purpose
design allows any kind of ontological knowledge base to be explored, thus being highly domain-
independent and (consequently) highly reusable. With reference to the user classification scheme
introduced in Section 4.1, it is easy to recognize that such tools are mainly addressed at domain
modelers and ontology developers, and, in general, to people who are quite familiar with a formal
approach to knowledge engineering.

The Ontosaurus and Ontolingua Web clients could be considered as primitive multi-metaphor,
uniform systems, in that two different visualization schemes and navigation primitives are in-
tegrated for the semantic browsing of concepts as well as instances. However, such systems are
strictly non-orthogonal and non-proactive, because each presentation scheme can be applied only
to one kind of entities. Finally, no graphical editing facilities are provided to manually adjust
the rendering of the displayed information.

20

Figure 21: Part of the Ontolingua Web client interface

4.2.2 Thick client ontology editors: OilEd and Protégé

Ontology editors are a class of tools that need to implement intuitive knowledge base exploration
techniques in order to let users examine both concept definitions and relationships holding
between them, as well as edit new information. Also, effective facilities for visualizing instances
and for browsing links between them are extremely important to this end. From now on, we
will implicitly refer to thick clients only, whose GUIs are more complex and resource-consuming
than those described in Subsection 4.2.1, but with a higher degree of interactivity and usability.
Here, we present the user interface provided by two such tools, namely OilEd [10] and Protégé
[4].

The former is a free ontology editor supporting DAML+OIL, developed by the University of
Manchester, whose latest version also supports OWL; OilEd is able to reason on the SHIQ and
the SHF Description Logics, by exploiting the services offered by the FaCT reasoning system
[39]. Figure 22 illustrates part of the user interface provided by OilEd.

The latter is a free open-source Java tool based on the Eclipse [8] framework, providing an
extensible architecture for the creation of customized knowledge-based applications. Indeed,
Protégé is one of the most widespread tools currently used in the field of ontology management:
to this end, it provides several plug-ins, including the Protégé OWL Plugin [5] for manipulating
OWL, RDFS and RDF documents. Since the GUIs of these two products are very similar, both
in the way they present ontological information and in the kind of offered editing functionalities,
int this subsection we are going to discuss the user interface of the Protégé OWL Plugin only.
A screenshot of the Protégé OWL Plugin GUI is illustrated in Figure 23.

As can be noticed, classes are shown on the left frame and are hierarchically arranged ac-
cording to their specialization relationships. Actually, this is how most editing tools visually
represent the semantics of rdfs:subclassOf property instances between different classes. Ontol-
ogy editing tools usually give a visual rendering only to the semantics of those properties and
classes that are part of the OWL, RDFS and RDF specifications, thus retaining a high degree
of domain-independence. Since the target of such tools are knowledge engineers and develop-
ers, configurability is not the main concern, while the applicability range of the visualization
metaphor and the user interaction pattern is a mandatory requirement.

21

Figure 22: Part of the OilEd user interface

Figure 23: Part of the Protégé OWL Plugin user interface

In general, ontology editing tools provide two different visual languages for representing and
editing the schema and instance subsets of an ontological knowledge base. As most knowledge
bases draw a clear separation between such worlds, the presentation metaphor turns out to be
usable in a wide range of situations. However, tools that are based on such an assumption often
fail to manage the visualization and creation of knowledge bases where classes are treated as
instances and viceversa, as allowed by the OWL Full specification.

Thus, the Protégé OWL Plugin has a multi-metaphor, non-orthogonal knowledge presenta-
tion feature. It also offers a limited form of graphical editing for customizing the way instances

22

are visualized in a form-like fashion: the kind of allowed customizations are mainly related to
field repositioning and resizing.

Straightforward navigational features supported, including the well-known “expand sub-
classes” and “show instances” primitives, as well as a hyperlink-style browsing of properties
relating pairs of individuals. Apart from this, a dedicated plug-in exists which allows to pose
simple queries by typing textual information into some fields of a dedicated form.

4.2.3 Protégé Plugins

As already stated in Subsection 4.2.2, Protégé is an Eclipse-based framework supporting ex-
tensions for customized knowledge-based applications. This framework has been exploited for
integrating tools explicitly oriented to knowledge visualization with other tools more specifically
designed for ontology editing.

Figure 24: User interface of the OntoViz Plugin for Protégé

The OntoViz Plugin [2, 58] for Protégé makes use of the AT&T’s GraphViz [1] tool to show
an ontology as a graph-like structure, where classes and instances are rendered as nodes while
property instances are drawn as edges. OntoViz is a single-metaphor, configurable tool, in that
it only allows knowledge bases to be rendered as a single graph, but a lot of customization
options are provided to change the visualization state of classes, properties, instances, property
instances, as well as a way for specifying colors to use when displaying such entities. OntoViz
does not offer graphical editing features, as the user is not able, for example, to perform drag &
drop operations on graph nodes and, in general, to rearrange the graph in order to meet custom
layout criteria. Figure 24 shows an example of how the OntoViz Plugin can render the same
ontology shown in Figure 23.

The OWLViz Plugin [3] for Protégé , for which a screenshot is illustrated in Figure 25,
is similar to the above mentioned OntoViz Plugin, in that it shows an ontology as an graph
structure. Still, it has a very limited support for customization, by just allowing classes to be
shown or hidden, and specialization relationships only are drawn. Thus, the OWLViz Plugin
can be thought of as a single-metaphor, non-configurable tool mainly targeted at domain experts
and knowledge engineers, providing no graphical editing nor navigational facilities.

23

Figure 25: User interface of the OWLViz Plugin for Protégé

The TGVizTab Plugin [6] for Protégé differs from other graph-structured knowledge pre-
sentation systems because it is based on a smart visualization technique called force-directed
layout [49]; the plug-in makes use of the TouchGraph [7] library to implement the force-directed
layout algorithm. As usual, classes and instances are shown as graph nodes, while properties
relating pairs of classes and instances are rendered as edges. The distinguishing feature of the
force-directed layout approach is that the graph layout is automatically rearranged in such a
way to make it as readable as possible, by minimizing the crossing of edges and the overlap of
nodes.

The TGVizTab Plugin has graphical editing facilities, since it allows users to manually change
the position of graph nodes: as drag & drop are being performed, the layout gets dynamically
updated. As shown in Figure 26, however, the drawing of graphs containing many edges and
nodes could result quite unwieldy even for users with deep knowledge of the rendered ontology.
Fortunately, like the OntoViz Plugin, the TGVizTab Plugin offers a lot of customization options
for changing the color used to draw different property and class instances and their visualization
state, thus being a single-metaphor, configurable knowledge presentation systems.

As a final comparison, while the OntoViz and TGVizTab Plugins implement some simple
navigation primitives mainly consisting of graph nodes expansion, OWLViz representations are
completely static. This means that there is no way to obtain a representation for a different
subset of the underlying ontology by acting on the currently available representation.

Jambalaya [24] is the last Protégé Plugin we discuss in this subsection. Designers of Jambal-
aya were motivated by a set of requirements collected by means of a broadly delivered question-
naire as described in [25], where the crucial conclusion is made that knowledge base management
tools should be characterized by both domain-independence and configurability (also see Section
4.1 for a discussion of this issue). Jambalaya is an interactive, highly configurable environment
for exploring ontological knowledge bases.

The main novelty in the approach Jambalaya represents ontological information consists
in organizing graph nodes into containment hierarchies, where the semantics of such graphical
containment can be specified by selecting the set of properties that determine when the visual
representation of a resource should be arranged into the visual representation of another re-

24

Figure 26: User interface of the TGVizTab Plugin for Protégé

source. By default, such properties are rdfs:subclassOf and rdf:type, meaning that subjects of
statements whose predicates are rdfs:subclassOf or rdf:type must be rendered inside the visual
items produced for objects of those statements (for an explanation of the terminology, refer to
[41]).

As multiple containment hierarchies are generated, properties that relate objects from differ-
ent hierarchies are traced as edges between the corresponding boxes. Thus, Jambalaya visually
renders an ontology as a graph in which the semantics of some relationships, instead of being
represented as edges, are encoded through graphical containment (see Figure 27).

Figure 27: User interface of the Jambalaya Plugin for Protégé

25

Jambalaya also allows to display a form for editing the property values of any shown instance
inside its representing node, together with zooming facilities for focusing one a subset of the
ontology. Also, different colors can be associated to different classes of objects and different
properties. Apart from the graphical editing facilities allowing users to manually rearrange the
layout of the presented graph, Jambalaya only realizes a limited set of interaction primitives,
which mainly consist in expanding the containment hierarchies and navigating property links.

4.2.4 WebOnto

WebOnto [22] is a Java applet coupled with a customized Web server which allows users to
browse and edit knowledge models over the Web (WebOnto is now available as a public service).
WebOnto makes use of the canonical visualization of ontologies as graphs (see Figure 28), and
presents little innovation as compared to other existing tools. It is not configurable, not very
interactive in the way users can refine their view on a given ontology (although some graphical
editing is allowed, for example manual repositioning of nodes), and seems not to be a full-
fledged knowledge exploration tool (indeed, WebOnto was designed to complement the ontology
discussion tool Tadzebao [21] as an effort to enable collaborative browsing, creation and editing
of ontologie).

Figure 28: User interface of the WebOnto application

No semantic browsing facilities are provided, and ontology exploration is only performed
by first selecting a concept from a (non-hierarchical) list, and by consequently drawing its
specialization tree. Concept instances are shown in separate, form-like views where property
values can be read and modified, thus making WebOnto a non-uniform knowledge presentation
system.

4.2.5 Ontorama

Ontorama is another graph-based ontology presentation tool implementing the Graphical Fish-
eye visualization technique [33]; this technique lets users focus on a restricted subset of the
displayed ontology. As Figure 29 shows, the left frame contains a spherical distorted view that
magnifies central elements while shrinking outermost ones (the magnifying lens metaphor is also

26

adequate). The right frame window allows to select concepts from a specialization hierarchy
(taxonomy): when a concept is selected, the left frame view is automatically synchronized to
put the corresponding element into the focus of the lens. The same effect can be obtained by
double clicking on a node into the visualization sphere.

Figure 29: User interface of the Ontorama tool

The graphical arrangement of nodes in the view is performed automatically in such a way
to make the graph as readable as possible, but no user intervention is allowed for manually
modifying the generated layout. As for the TGVizTab Plugin for Protégé (see Section 4.2.3),
since expressive filtering techniques are not provided, the obtained representation could become
quite confusing as the size of the ontology gets larger. Finally, no navigation primitives are
provided to move across different parts of the whole knowledge apart from transferring the focus
of the lens from one concept to another.

Summing up, Ontorama is a domain-independent, single-metaphor, non-configurable soft-
ware for the visualization of ontologies. Although Ontorama greatly benefits from the adoption
of the Graphical Fisheye technique for focusing the view of a graph on a small set of nodes, it
suffers from the lack of most of the other feature an exhaustive tool should expose. In particular,
it does not support neither semantic browsing nor graphical editing.

4.2.6 KAON front-end

The Karlsruhe Ontology (KAON) tool suite has been developed in the context of the KAON
Semantic Web infrastructure [43, 38]. KAON is an open-source ontology management infras-
tructure targeted for business applications.

It includes a comprehensive tool suite allowing easy ontology creation and management and
provides a framework for building ontology-based applications. An important focus of KAON
is scalable and efficient reasoning with ontologies. In this context, we are only interested in dis-
cussing the features of the Java-based front-end that is available at http://kaon.semanticweb.org/demos,
for which a screenshot is illustrated in Figure 30.

Again, the Java-based front-end shows an ontology as a graph structure, and makes use of
the force-directed layout algorithm to dynamically reposition graph nodes as node expansions
are performed (a raw form of semantic browsing) in order to maximize the overall readability.

27

Figure 30: Java-based KAON front-end available online

Ontology editing is also supported, as new concepts, instances and properties can be easily
created and added to the current view.

Apart from the ability of expanding and collapsing (as well as hiding and showing) graph
nodes, the query formulation support is limited to keyword-based searches of concepts, proper-
ties and instances. Configuration options for the user interface do not encompass any way of
customizing the appearance of nodes according to the semantics of denoted resources, e.g. by
highlighting certain concepts or instances, associating different colors or drawing styles for edges
that represent particular properties, and so on.

4.2.7 Spectacle

Spectacle [32] is a commercial tool allowing for a visualization of ontological information based
on the Cluster Map metaphor. As for most of the previously described approaches, ontologies are
still rendered as graphs: however, graph nodes are added here not only for single concepts, but
also for pairwise intersections of concepts. Concepts and concept intersections are represented
as sets (clusters) of elements with a finest granularity (instances).

Cluster Maps offer a significant view over a knowledge base by presenting an intuitive,
detailed and quantified report of how instances are spread out through a set of classes chosen
from a given taxonomy. A variant of the well-known spring-embedder algorithm for graph
drawing [23] is used to make the depicted image as clear as possible. Cluster Map views are
partially configurable as to the rendering style, but the only highlighted semantics are those of
instantiation and specialization relationships, as well as concept intersection. Figure 31 shows
a sample Cluster Map related to Job Vacancies (the source is [32]).

A limited form of query formulation is allowed, which consists in selecting a different set
of classes from the given taxonomy according to which clusters are generated. A Cluster Map
view over a given knowledge base could be refined by choosing subclasses of the actually selected
ones to filter out uninteresting instances and clusters. Semantic browsing is possible in the sense
that instances are shown as a textual list of individual descriptions when the user clicks on a
cluster (thus making Spectacle a non-uniform system): however, no advanced visual facilities
are provided for visually describing the semantics of the extensional part of an ontology.

28

Figure 31: A sample Cluster Map

With reference to the classification of users drawn in Section 4.1, the Spectacle system is
mainly targeted at end-users. Spectacle does not provide any semantic editing nor graphical
editing features.

4.2.8 IsaViz and Graph StyleSheets

IsaViz is a W3C’s visual environment for browsing and authoring RDF models represented as
graphs. The user interface allows for smooth zooming and navigation in the graph creation,
and for editing of graphs by drawing ellipses, boxes and arcs. The novelty of IsaViz is the
introduction (from version 2.0 on) of Graph StyleSheets (GSSs) as a mechanism for associating
style to semantics (the underlying idea is to give GSSs the same role CSSs have in the formatting
of HTML documents): this gives IsaViz a very high degree of configurability.

As nodes denoting concepts and instances with certain properties can be rendered by means
of icons that describe entities living in a particular application domain, images that are familiar
to a restricted class of end-users, even bound to a specific application domain, could be used
as an intuitive representation for entities belonging to that domain. Also, the graph metaphor
for representing knowledge bases is not the only way information could be visualized: a tabular
form for rendering concepts and instances is also available, as can be seen from Figure 32.

Since edges and nodes are processed by a generic formatting engine, which assigns styles
according to the visualization directives contained in GSSs, this framework can instantiate
domain-specific representations without suffering from a significant loss of reusability. More-
over, since GSSs can be understood as a primitive, declarative way of specifying visualization
metaphors, orthogonality is an interesting characteristics of IsaViz.

The main drawback of this tool is the lack of any semantic browsing and non-trivial query

29

Figure 32: Part of an RDF document with GSS styling

formulation support; however, the availability of different style sheets can make IsaViz a flexible
tool for generating representations targeted at both end-users and knowledge engineers (as well
as, obviously, ontology developers).

4.3 Feature summary

In the previous section we have conducted a survey on some of the most widespread tools
implementing some more or less sophisticated techniques for the visualization and exploration
of ontological knowledge bases, and we have discussed them with reference to the evaluation
criteria defined in subsection 4.1. Table 1 summarizes the characteristics of such tools.

Table 1: Schematic classification of the surveyed tools

Tool Config. Multi Orthog. Uniform Semantic Query
metaphor browsing formulation

Ontolingua no yes no yes yes no
Ontosaurus no yes no yes yes no
Protégé no yes no no yes yes
OntoViz partly no no no no poor
OWLViz no no no no no poor
TGVizTab yes no no no yes poor
Jambalaya yes no yes no yes yes
WebOnto no no no no yes poor
Ontorama no no no no no poor
KAON no no no no yes yes
Spectacle no yes no no yes yes
IsaViz yes yes yes no no no

30

5 Conclusions

The analysis of the main query languages available for XML and the Semantic Web indicates
that the majority of them could act as a good basis for supporting the querying needs of the
Wisdom project. In particular, XQuery is the main candidate to be chosen as the Wisdom
query language. Indeed, the high flexibility of its constructs, perhaps enriched with some of the
constructs of the languages specifically designed for the semantic web, well satisfy the needs of
the project for flexible information search in a heterogeneous/distributed ontologies scenario.

As to query rewriting approaches, and independently from the query language that will be
eventually chosen, we have seen that many reformulation approaches exist in the literature in a
standard relational scenario, which is indeed too different from the one of the Wisdom project in
order to consider these approaches as feasible. However, some structural query rewriting tech-
niques were also proposed and developed for systems managing heterogeneous XML document
bases and in peer data management systems involving ontology data. Such techniques have thus
been analyzed more in depth and they could be fruitfully adapted to the complex architecture
of Wisdom.

Finally, in the knowledge presentation field, we have inspected and presented several visual
languages, user interaction paradigms and tools. From this analysis the consideration that the
intuitiveness and friendliness goals still seem to be far from being reached emerges; however, we
hope that this critical discussion of the weaknesses of the available approaches will facilitate the
hard task of defining in Wisdom novel formalisms and user interaction paradigms overcoming
them.

References

[1] GraphViz - graph visualization software. [Online]. Available at
http://www.graphviz.org/About.php.

[2] OntoViz tab: Visualizing Protégé ontologies. [Online]. Available at
http://protege.stanford.edu/plugins/ontoviz/ontoviz.html.

[3] OWLViz - making OWL easier. [Online]. Available at http://www.co-
ode.org/downloads/owlviz/co-ode-index.php.

[4] Protégé ontology editor and knowledge acquisition system. [Online]. Available at
http://protege.stanford.edu/.

[5] Protégé OWL plugin. [Online]. Available at http://protege.stanford.edu/plugins/owl/.

[6] TGVizTab - a TouchGraph visualization tab for Protégé 2000.
http://www.ecs.soton.ac.uk/ ha/TGVizTab/TGVizTab.htm.

[7] Touchgraph development. [Online]. Available at http://touchgraph.sourceforge.net/.

[8] Eclipse platform technical overview. Technical report, Object Technology Interna-
tional, Inc., February 2001. Available at http://www.eclipse.org/whitepapers/eclipse-
overview.pdf.

[9] S. Alexaki, G. Karvounarakis, V. Christophides, D. Plexousakis, and K. Tolle. The ICS
FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. of the 2nd
International Workshop on the Semantic Web, 2001.

[10] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a reason-able
ontology editor for the semantic web. In Proceedings of KI2001, Joint German/Austrian

31

conference on Artificial Intelligence, number 2174 in Lecture Notes in Computer Science,
pages 396–408, Vienna, September 2001. Springer-Verlag.

[11] David Beckett. Design and implementation of the redland RDF application framework.
WWW10 Presentation, May 2001.

[12] A. Berglund, S. Boag (XSL WG), D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0. W3C Working Draft (4 April 2005), 2005.

[13] François Boutin and Mountaz Hascoët. Focus dependent multi-level graph clustering. In
Proceedings of the working conference on Advanced visual interfaces, pages 167 – 170, May
2004.

[14] T. Bray, Jean Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0. W3C Recommendation (4 February 2004), 2004.

[15] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation (10 February 2004), 2004.

[16] Jeen Broekstra and Arjohn Kampman. Query language definition. On-
To-Knowledge project deliverable, March 2001. [Online]. Available at
http://sesame.administrator.nl/doc/del9.pdf.

[17] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,
T. Stanienda, and F. Velez. The Object Database Standard ODMG 3.0. Morgan Kaufmann,
2000.

[18] D. Chamberlin. XQuery: An XML query language. IBM Systems Journal, 41(4), 2002.

[19] S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. In Proc. of the
27th VLDB, 2001.

[20] A. Deutsch and V. Tannen. A system for publishing xml from mixed and redundant storage.
In Proc. of the 29th VLDB, 2003.

[21] John Domingue. Tadzebao and WebOnto: Discussing, browsing, and editing ontologies on
the web. In B. Gaines and M. Musen (Eds), editors, Proceedings of the 11th Knowledge
Acquisition for Knowledge-Based Systems Workshop. SRDG Publications, 18-23 April 1998.

[22] John Domingue, Enrico Motta, and Oscar Corcho Garcia. Knowledge Modelling in WebOnto
and OCML: A User Guide. Knowledge Media Institute, Milton Keynes, MK7 6AA, UK,
1999.

[23] Peter Eades. A heuristic for graph drawing. In Congressus Numerantium, pages 149–160,
1984.

[24] Neil A. Ernst, Margaret-Anne Storey, and Mark Musen. Addressing cognitive issues in
knowledge engineering with jambalaya. Workshop on Visualization in Knowledge Engi-
neering, KCAP 03, October 2003.

[25] Neil A. Ernst and Margaret-Anne D. Storey. A preliminary analysis of visualization re-
quirements in knowledge engineering tools. Technical report, CHISEL Technical Report,
University of Victoria, August 2003.

[26] A. Malhotra et al. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working
Draft (4 April 2005), 2005.

32

[27] M. Fernandez et al. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft (4 April
2005), 2005.

[28] S. Agarwal et al. Semantic Methods and Tools for Information Portals. GI Jahrestagung,
1, 2003.

[29] S. Boag et al. XQuery 1.0: An XML Query Language. W3C Working Draft (4 April 2005),
2005.

[30] Adam Farquhar, Richard Fikes, Wanda Pratt, and James Rice. Collaborative ontology
construction for information integration. Knowledge Systems Laboratory Department of
Computer Science, August 1995.

[31] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL: A Language for Deductive Query Answering
on the Semantic Web. KSL Technical Report 03-14, 2003.

[32] Christiaan Fluit, Marta Sabou, and Frank van Harmelen. Ontology-based information
visualisation. Springer Verlag, 2002.

[33] George W. Furnas. Generalized fisheye views. Human Factors in computing systems, CHI
’86 conference proceedings, ACM, pages 16–23, 1986.

[34] J. Caroll G. Klyne. Resource Description Framework (RDF): Concepts and Abstract Syn-
tax. W3C Recommendation (10 February 2004), 2004.

[35] H. Garcia-Molina, S. Melnik, and E. Rahm. A Versatile Graph Matching Algorithm and
its Application to Schema Matching. In Proc. of the 18th ICDE, 2002.

[36] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate XML joins.
In Proc. of ACM SIGMOD, 2002.

[37] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. of the 19th ICDE, 2003.

[38] Siegfried Handschuh, Alexander Maedche, Ljiljana Stojanovic, and Raphael Volz. KAON -
the KArlsruhe ONtology and semantic web infrastructure.

[39] Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,
University of Manchester, 1997.

[40] G. Karvounarakis, A. Magganaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl,
and K. Tolle. Querying the Semantic Web with RQL. Computer Networks, 42(5), 2003.

[41] Graham Kline and Jeremy J. Carrol. Resource description framework (RDF: Concepts and
abstract syntax. [Online]. Available at http://www.w3.org/TR/rdf-concepts/, February
2004. W3C Recommendation.

[42] P. Lehti, N. Shreshta, and S. Hollfelder. The Semantic Web Query Language SWQL. IPSI
Franhofer Working Draft, 2003.

[43] Alexander Maedche, Boris Motik, and Raphael Volz. KAON - a framework for semantics
based e-services. Institute AIFB, University of Karlsruhe.

[44] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the Semantic
Web through RVL Lenses. In Proc. of the International Semantic Web Conference, 2003.

[45] F. Mandreoli, R. Martoglia, and P. Tiberio. Approximate Query Answering for a Hetero-
geneous XML Document Base. In Proc. of the 5th WISE Conference, 2004.

33

[46] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview. W3C
Recommendation, 2004.

[47] Jeff Michaud and Margaret-Anne Storey. The role of knowledge in software customiza-
tion. 15th Internation Conference on Software Engineering and Knowledge Engineering
(SEKE03), 2003.

[48] L. Miller. Inkling: RDF query using squishql. [Online]. Available at
http://swordfish.rdfweb.org/rdfquery.

[49] Paul Mutton and Peter Rogers. Spring embedder preprocessing for www visualization. In
Proceedings Information Visualization 2002. IVS, IEEE, pages 744–749, July 2002.

[50] B. Ooi, Y. Shu, and K. L. Tan. Relational data sharing in peer-based data management
systems. SIGMOD Record, 23(3), 2003.

[51] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-Condition-Action
language for RDF. In Proc. of the 3rd International Workshop on Web Dynamics, 2004.

[52] P.Zezula, F. Mandreoli, and R. Martoglia. Unordered XML Pattern Matching with Tree
Signatures. In Proc. of the 12th Convegno su Sistemi Evoluti per Basi di Dati (SEBD 2004),
2004.

[53] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching the
rubber sheet: A metaphor for viewing large layouts on small screens. In Proceedings of
ACM UIST ’93, pages 81–91. ACM Press, 1993.

[54] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML data. In
Proc. of the ACM SIGIR Workshop On XML and Information Retrieval, 2000.

[55] A. Seaborne. RDQL Tutorial for Jena. HP Labs, 2002.

[56] A. Seaborne. RDQL - A Query Language for RDF. HP Labs Submission to the W3C, 2004.

[57] D. Shasha, J.T.L.Wang, H. Shan, and K. Zhang. ATreeGrep: Approximate Searching in
Unordered Trees. In Proc. of the 14th International Conference on Scientific and Statistical
Database Management, 2002.

[58] Michael Sintek. OntoViz tab: Visualizing Protégé ontologies. [Online]. Available at
http://protege.stanford.edu/plugins/ontoviz/ontoviz.html, 2003.

[59] Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russ. Toward distributed use of
large-scale ontologies. In Proceedings of the 10th Banff Knowledge Acquisition Workshop,
November 9-14 1996.

[60] I. Tatarinov and A. Halevy. Efficient Query Reformulation in Peer Data Management
Systems. In Proc. of ACM SIGMOD, 2004.

[61] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree Signatures for XML Querying and
Navigation. In Proc. of the XML Database Symposium, 2003.

[62] P. Zezula, F. Mandreoli, and R. Martoglia. Tree Signatures and Unordered XML Pattern
Matching. In Proc. of the 30th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2004), 2004.

[63] K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered labeled
trees. Inf. Process. Lett., 42(3), 1992.

34

