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Abstract

Sommario

Introduction

In recent years, the development of ontologies has been moving from the realm of Artificial
Intelligent laboratories to the desktops of domain experts. Ontologies has become common on
the World-Wide Web, where contents have to be exchange (as automatically as possible) among
disparate applications and users and consequently the needed of having a precise, formal and
explicit semantics raises.

In [27] some reasons to develop ontologies are collected:

To share common understanding of the structure of information among people or software
agents, in order to provide an explicit representation of the contents of the source described
by means of the ontology. This scenario, called also neutral authoring, may be useful for
a company or an organization by developing their own ontology and then developing
translators from this ontology to the terminology required by the various target systems;

To enable reuse of domain knowledge, in order to build representations of large domains by
integrating existing ontologies describing portions of the large domain or using a neutral
ontology as agreed standard basis for converting/mapping two ontologies;

To make domain assumption explicit, in order to help new users who must learn what
terms in the domain mean, or to facilitate search. An ontology is used as a structuring
device for an information repository; this supports the organization and classification of
repositories of information at a higher level of abstraction than is commonly used today.
They can be used as a sophisticated indexing mechanism into such repositories;

To separate domain knowledge from the operational knowledge. This kind of ontology
is the basis of the "ontology driven Software Engineering”!
domainis used as a basis for specification and development of some software.The idea is
to create an ontology that characterizes and specifies the things that the software system
must address, and then use this ontology as a (partial) set of requirements for building
the software. The benefits of ontology-based specification are best seen when there is a
formal link between the ontology and the software;

where an ontology of a given

To analyze domain knowledge: formal analysis of terms is extremely valuable when both
attempting to reuse existing ontologies and extending them.

'http : [ Jwww.bpiresearch.com/W P_BP M Ontology.pdf



There are several survey in literature defining what an ontology is and which language may
describe it [8, 9, 13, 34, 10, 35, 32, 15, 14, 1]. Starting from these previous works, this technical
report collects the main analysis results and tries to define the main features for an ontology
language within the WISDOM project. In particular, another language, the ODL;3 language,
extended from the standard ODL at the DBgroup from the University of Modena and Reggio
Emilia, will be compared to the most common ones and some extension of it will be proposed.

This report proposes in section 2 some definitions of ontology; starting from the found
definitions, section 3 tries to define some requirements that an ontology language has to satisfy.
Section 4 analyzes the main languages developed to describe ontologies and introduces the ODL s
language. Finally, we sketch out some conclusions and Appendix A introduces a comparison
between the W3C Web Ontology Language OWL and the ODL;s language.

2 Overview of the ontology definitions

Different research groups expressed different definitions of ontology; many of these contradict
one another. In practical terms, an ontology aims at proving a formal explicit description
of concepts in a domain of discourse (classes - sometimes called concepts), properties of each
concept describing various features and attributes of the concept (slots or roles or properties),
and restrictions on slots (facets or role restrictions). Then, developing an ontology includes:
defining classes in the ontology, arranging the classes in a taxonomic hierarchy, defining slots
and describing allowed values for these slots, arranging the slots in a taxonomic hierarchy and
finally filling in values for slots and instances.

In order to give a formal ontology definition, we claim that all the ontology definitions may
be synthesized into two possible kinds of ”ontology” definition:

1. Taken from Philosophy, where it means a systematic explanation of being
2. Based on the process followed to build the ontologies

These two approaches, that we will analyze with more detail in next section, do not highlight that
different research groups think ontologies as ”products” having different levels of formalization
and with different expressive power. Several papers tried to classify ontologies on the basis of
these features, defining ”different kinds” of ontologies. Figure 1, taken from [36], shows different
kinds of ontologies where the difference among each other is the formalization level. In some
cases, the notion of ontology may be diluted including taxonomies as full ontologies [32, 37].
Internet may be one of the cause of the large diffusion of taxonomies: its pervasiveness enabled
the growth of standards describing services and goods. These standards, used especially for
e-commerce (e.g. UNSPSC, ecl@ss, Naics) in order to describe services and goods provided by
companies, provide a consensual conceptualization of a given domain and may be thought of as
domain ontologies.

2.1 Definitions from Philosophy

The most quoted definition in literature was written by Gruber [14] where an ontology is an
explicit specification of a conceptualization Based on Gruber’s definition, many definitions of
what an ontology is are proposed. In particular, in [32], Studer et al. propose a definition
where Conceptualization refers to an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon. Ezplicit means that the type of concepts
used, and the constraints on their use are explicitly defined. Formal refers to the fact that
the ontology should be machine-readable. Shared reflects the notion that an ontology captures
consensual knowledge, that is, it is not private of some individual, but accepted by a group.
Another relevant definition is in [15], where Guarino says an ontology is a logical theory for



XML Description

\ Schoma Logics
'}J Coiinial (OWL-DL)
Tz i XML DTDs t‘i l'axonemies
| | | \ |
n by L 4% i 4 e
" I \ A A W Y T A\l »
1
‘ordinary’ \  Data Modds
Glossaries ‘I’; (UML, STEP)
Data "e; N el
Dictionaries DB | Frames Yagle
(EDI) ; (OKBC)
Schema
Glossaries & MetaData, Formal Ontologies

Data dictionaries

XML Scltemas, & Inference
& Data Models

Figure 1: Different kinds of ontologies

the intended meaning of a formal vocabulary, i.e. the ontological commitment to a particular
conceptualization of the world.

2.2 Operative definitions

Two are the most relevant definitions found in projects aiming at supporting users in creating
and editing ontologies:

e An ontology is a hierarchically structured set of terms for describing a domain that can be
used as a skeletal foundation for a knowledge base - SENSUS European project [http://www.sensus-
int.de/]

e An ontology is that part of the system which specifies what things exist and what is true
about them - OpenCyc project [http://www.opencyc.org/]
2.3 A general definition

In [14] a large definition of ontology is given: an ontology is a fifth-tuple composed of classes,
instances, functions, relationships, axioms: (C,I,R,F,A) where

e (' is the set of the concepts, that is the set of the abstractions used to describe the objects
of the world;

I is the set of individuals, that is, the actual objects of the world. The individuals are also
called instances of the concept;

e R, is the set of relationships defined on the set C
e F', is the set of functions defined on the set of concepts and that returns a concept;

A set of axioms, that is first order logic predicates that constrain the meaning of concepts,
relationships and functions.

Analyzing the approaches proposed in literature, we may outline some common points:

e There are different and complementary points of view of the same reality described by the
definitions.



e All the definitions presented above highlight a specific aspect of a role played by ontologies.

e All definitions, however, share the idea that an ontology provides a description of a par-
ticular viewpoint about a domain and that such a description must be explicit, in that it
states a vocabulary for the domain, which is expressed by a certain degree of formality, and
that a group commits to use the vocabulary according to the intended meaning associated
with it in order to communicate.

e The ontologies may be reused and shared across applications and by groups of people

e An ontology is not independent of the language used to describe it (two ontologies may be
different for example in the vocabulary used or in the assumptions while sharing the same
conceptualization).

2.4 Ontologies vs conceptual data models

There are many relationships between database schema and ontologies that may be summarized
in three categories [36]:

e language expressivity: there is much overlap in expressivity (classes or concepts in on-
tologies correspond to entities in a E/R model, attributes and relationships in E/R corre-
spond to properties in ontologies languages, ...) and many specific differences in general
attributable to the different ways that DB schema and ontologies have been used. Ontolo-
gies have a range of purposes including interoperability, search, and software specification.
The primary use of most DB schema is to structure a set of instances for querying a single
database. This difference impacts heavily on the role of constraints. For ontologies, con-
straints are called axioms. Their main purpose is to express machine-readable meaning to
support accurate automated reasoning. This reasoning can also be used to ensure integrity
of instances in a knowledge base. For databases, the primary purpose of constraints is to
ensure the integrity of the data (i.e. instances). These ”integrity constraints” can also be
used to optimize queries and help humans infer the meaning of the terms.

e systems that implement the language: there are some key similarities and differences in
systems that implement DB schema languages vs. ontology languages. For both, there
are processing engines that can be used to perform reasoning. An important difference is
that reasoning over ontologies normally is done by general logic-based theorem provers,
specific to the language. Although ontology inference may be used for queries and to ensure
integrity of instances, these are optional. The fundamental role of a reasoning engine is to
derive new information via automated inference. Inference can also be used to ensure the
logical consistency of the ontology itself. Note that deriving new information and checking
consistency can take place with or without instances. Classically, such mixing of types
with instances does not take place with DB schema and data. This is mainly due to much
greater scale and performance requirements for database systems. Another key difference
is support for taxonomic reasoning: it is fundamental for nearly all ontology applications,
but it is not supported by most DBMS.

e usage scenarios: the different roles of DB schema and ontologies also affect design and other
pragmatic issues. For example, there is much effort on normalization for DB schema,
with no similarly pervasive analogous step for ontologies. Enforcement of DB integrity
constraints is expensive; therefore many constraints identified during modeling are left
unstated, resulting in loss of captured meaning.



3 Main features of an ontology language

A complete ontology language would have to satisfy:

1.

3.1

The language has to express the domain knowledge, i.e. the main static information and
knowledge objects about a domain.

The language has to provide some inference mechanisms, i.e. how the static structures
represented in the domain knowledge can be used to carry out a reasoning process.

The language has to include mechanisms to provide the reuse and the integration of pre-
viously developed ontologies. Moreover, it has to provide mechanisms for mapping of
concepts belonging to different ontologies. The following capabilities have to be supported:

e Import of other ontologies;

e Mapping of similar concepts/relations belonging to other ontologies and reconciliation
of inconsistencies.

The language has to provide mechanisms to manage dynamics. In particular, there are
two aspects connected with dynamics:

¢ Ontologies may evolve;

¢ Ontologies represent an evolving real world.
The language has a graphical support (for human readability).

Ontologies may be multi-lingual, i.e. the same concept may be described in different
languages (for human readability).

Domain knowledge modelling primitives

With the term domain knowledge, we mean the main static information and knowledge objects
of a domain. There are several kinds of possible information about a domain. In [9], this
information is summarized in the following categories:

e Concepts/classes/entities, i.e., in a broad sense, anything about which something is

said and then it could be the description of a task, function, action, ... A class may also
be considered to be a set of objects which share a common structure and behaviour.

Attributes/slots and facets. Attributes (slots) allows describing and specifing classes.
The attributes may be local if belong to a specific concept; instance attribute, if its value
may be different for each instance of the concept; class attribute, if the value is the same
for all the instances of the concept; polymorph attribute, if the attribute assumes the same
name and different behaviour for different concepts. Facets are restrinctions for attributes
(type, default type, cardinality constraints, ...).

Taxonomies (of concepts and (in case) of relations). Taxonomies are used to organize
the knowledge in the domain using generalization/specialization relationships. implies an
extensional knowldge: if A is subclass (subrelation) of B, then every instance of A must
also be and instance of B.

Relationships represent interactions between concepts of the domain. In same languages
there is no difference between relations and attributes refering an attribute as a relation
between a class and a data type.



e Axioms, i.e. sentences that are always true. They are included in an ontology in order
to constrain its information, verify its correctness and deduct new information.

e Instances/Individuals/Facts/Claims, i.e. terms used to represent elements in the
domain.

e Rules are used to express set of actions and heuristics which can be represented indepen-
dently from the way they will be used.

3.1.1 Instances modelling

An ontology language may include operators to manage instances. Concerning the representation
of a specific domain, ontology languages may provide the following primitives:

e equality or inequality definition: the language may describe two equivalent classes (classes
having the same instances) or classes where the instances are different with each other.
For example OWL allows defining the following features:

— equivalentClass: Two classes may be stated to be equivalent. Equivalent classes have
the same instances. Equality can be used to create synonymous classes. For example,
Car can be stated to be equivalentClass to Automobile. From this a reasoner can
deduce that any individual that is an instance of Car is also an instance of Automobile
and vice versa.

— equivalentProperty: Two properties may be stated to be equivalent. Equivalent
properties relate one individual to the same set of other individuals. Equality may
be used to create synonymous properties.

— sameAs: Two individuals may be stated to be the same. These constructs may be
used to create a number of different names that refer to the same individual. Actually,
OWL does not adopt the unique-names assumption; just because two instances have
a different name or ID does not imply that they are different individuals. To ensure
that different equals are recognized as such the user has to explicitely indicate it, by
means of the different from operator.

— differentFrom: An individual may be stated to be different from other individuals.
Explicitly stating that individuals are different can be important when using lan-
guages such as OWL (and RDF) that do not assume that individuals have one and
only one name. For example, with no additional information, a reasoner will not
deduce that Frank and Deborah refer to distinct individuals.

— AllDifferent: A number of individuals may be stated to be mutually distinct in one
AllDifferent statement.

e Property restrictions: it allows restrictions to be placed on how properties can be used by
instances of a class. In OWL these restrictions may be expressed as follows:

— allValuesFrom: The restriction allValuesFrom is stated on a property with respect to a
class. It means that this property on this particular class has a local range restriction
associated with it. Thus if an instance of the class is related by the property to a
second individual, then the second individual can be inferred to be an instance of the
local range restriction class.

— someValuesFrom: The restriction someValuesFrom is stated on a property with re-
spect to a class. A particular class may have a restriction on a property that at least
one value for that property is of a certain type.



Further knowledge which is between the intensional and extensional level may be modelled:

most representative instances of a class and enumeration items for attributes:

3.2

e Most representative instances of a class. It may be useful to know the most representative

instances when a concepts is general for a specific domain. Starting from our experience
in integrating different ontology, we observed that: 1) the name and the description of a
concept/class is too general to comunicate the meaning; 2) When a class contains thousand
of instances and/or derives from an integration process (e.g. the concept is the synthesys
of the same concept in different sources), its name is in general approssimate and does not
fit in with the instances. For these reasons, the most significant instances can be useful to
know the domain described by the ontology. These significant instances may be found by
means of a clustering algorithm. For specific domain?, a further step may be applied: the
main instances may be organized in taxonomies.

Enumeration items for attributes. These items provide the knowledge about the accepted
values for an attribute. These values may be exploited in order to have the knowledge
about what really an attribute represents.

Inference mechanisms

Providing the language with inference mechanisms means to establish how the static structures
represented in the domain knowledge can be used to carry out a reasoning process. Figure 2
shows how the domain knowledge may be exploited in order to infer new knowledge.

3.3

Knowledge Inference
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Figure 2: Inference mechanisms used in ontology languages

Reuse and Integration

The reuse of different ontologies is guaranteed by means the introduction of an ”importing”
mechanism. By exploiting this operation different ontologies may be reused and inserted as a
part of another ontology, allowing the reuse of previously created domain conceptualizations.

2We applied a similar process in a e-commerce domain: by analyzing the web sites for enterprises producing
mechanic products, we found several ways (more than one thousand) to express the kinds of production. In order
to give to the user a more specific knowledge about the enterprises’ products, the instances belonging to the
7kind of production” were clustered and organized in taxonomy. This process was obtained by exploiting also the
taxonomies of products in the original web sites.



The match operation guarantees to identify similar concepts in different ontologies. Results
of the matching operations are mapping between terms (also belonging to different ontologies).
Ontology languages may define diffent kinds of mapping identifying different types of relation-
ships (similarity, broader term ...). Ontologies integration may generate conflicts that have to
be resolved [29]. These conflicts may be generally classified into two types:

e Representation conflicts, i.e. two models describe the same concepts in different way

e Fundamental conflicts, i.e. violations of meta-meta-model (e.g. one type restriction, when
the same element is described by means of different data types in different ontologies,
cardinality conflicts, ...).

Several papers investigate on mapping discovery [25], i.e. methods and techniques to (semi-)
automatically discover and define connections between terms. These methods may exploit a
shared ontology (e.g. SUMO [24], DOLCE [11], WordNet?) in order to identify similar con-
cepts in different ontology or use heuristic and machine learning techniques. Moreover, some
approaches are investigating a declarative formal representations of mapping in order to reason
with mapping [25].

In [7], an approach called conteztualizing ontologies is shown: an ontology is a contextual
ontology when its content are kept local, and therefore not shared with other ontologies, and
mapped with the contents of other ontologies via explicit context mapping. In this way two
levels are defined: one level refers to a general ontology where common concepts are described,
the second one allows specifying the common concepts in order to define local representations
of them. A particular language, extended from the OWL, was developed in order to represent
the map between the common concepts and the local representations.

In [38] and in the technical report D2.R2 ”Critical analysis of languages and mapping tech-
niques”, the state of the art in ontology mapping is proposed. In [33] there are some ideas for
a semantic enrichment for ontology mapping that exploits instance information of the ontology
to enrich the original ontology and calculate similarities between concepts in two ontologies.

3.4 Dynamics management

Business dynamics and changes in the operating environment often give rise to continuous
changes to application requirements that may be fulfilled only by changing the underlying on-
tologies. This is especially true for WWW and Semantic Web applications, that are based on
heterogeneous and highly distributed information resources and therefore need efficient mecha-
nisms to cope with changes in the environment. So over a period of time an ontology needs to be
modified to reflect changes in the real world, changes in user’s requirements, drawbacks in the
initial design, to incorporate additional functionality or to allow for incremental improvement.
In fact very seldom an ontology is perfect the first time it is made, and then continues, without
change, to be as useful over time as it was when it was first deployed. The reasons for changes
are inherent in the complexity of reality and in the limited ability of humans to cope with this
complexity. The changes in ontologies are generated from three possibles events:

e changes in the domain (are comparable to changes in database schemas);

e changes in conceptualization (can result from a changing view of the world and from a
change in usage perspective);

e changes in the explicit specification (occur when an ontology is translated from one lan-
guage into another one).

®http://wordnet.princeton.edu/



Ontology development then is a dynamic process starting with an initial rough ontology, which
is later revised, refined and filled in the details. Consequently, an ontology almost certainly
should be evolved in order:

e to fix "bugs” in the initial design (corrective maintenance);

e to adapt itself to the changes in the environment (adaptative maintenance);

e to improve itself after it has become operational (perfective maintenance);

e to avoid future changes and to alleviate maintenance (preventive maintenance).

The ontology management is becoming more important nowadays. The major reason for this
is the increasing number of ontologies in use and the increasing costs associated with adapting
them to changing requirements. Developing ontologies and their applications is expensive, but
evolving them is even more expensive. However, even though evolution over time is an essential
requirement for useful ontologies, appropriate tools and strategies for enabling and managing
evolution are still missing. This level of ontology management is necessary not only for the
initial development and maintenance of ontologies, but it is essential during deployment, when
scalability, availability, reliability and performance are absolutely critical.

To solve this crucial problem several studies have been conducted. In the following we will
present two major approach: evolution approach, that try to manage the problem of dynamics
in its total complexity and versioning approach, that relies on the use of different version of
ontologies to reduce the complication of the problem.

The ontology evolution [23] is the timely adaptation of the ontology as well as the consistent
propagation of changes, because a modification in one part of the ontology may generate subtle
inconsistencies in other parts of the same ontology, in the instances, depending ontologies and
applications. The most important problem to face when a change to an ontology occurs, is to
ensure the consistency of the ontology and all the dependent artifacts.

In literature several studies start assuming that the complexity of the dynamics involving
ontologies, applications and instances, is too high to maintain everything aligned. A versioning
methodology can handle the complexity of the alignment required by a change, providing the
user with such a system that manages ontology revisions over time. In a general sense, ontology
versioning means that there are multiple variants of an ontology around. In practice, those
variants often originate from changes to an existing variant of the ontology and thus form a
derivation tree [19]. Then, ontology versioning can be defined as the ability to handle changes in
ontologies by creating and managing different variants of it [19]. In order to achieve this ability
several methodologies has been studied. In particular methods to distinguish and recognize
versions, and procedures for update and change ontologies are developed.

In [26], it is claimed that the traditional distinction between versioning and evolution is not
applicable to ontologies: the management of changes is the key issue in the support for evolving
ontologies. Hence, they try to combine ontology evolution and versioning into a single concept
defined as the ability to manage ontology changes and their effects by creating and maintaining
different variants of the ontology. This ability consists of methods to distinguish and recog-
nize versions, specifications of relationships between versions, update and change procedures
for ontologies, and access mechanisms that combine different versions of an ontology and the
corresponding data.

They distinguish two modes of ontology evolution: traced and untraced evolution.

e Traced evolution largely parallels schema-evolution where the evolution is treated as a
series of changes in the ontology. After each operation that changes the ontology, the
effects on the instance data and related ontologies have to be considered. The resulting
effect is determined by the combination of change operations.



e With the untraced evolution, two versions of an ontology are proposed and no knowledge
of the steps that led from one version to another is given. The problem of finding the
differences between (versions of) ontologies is in fact very close to the problem of ontology
merging. In both cases, two overlapping ontologies are proposed with the goal to determine
a mapping between their elements. When we are merging ontologies, we concentrate
on similarities, whereas in evolution we need to highlight the differences. In addition,
in the case of ontology evolution we need to make much more ”liberal” assumptions in
determining which concepts are the same.

The ontology languages do not consider dynamics issues (or they deal with in a trivial way,
e.g. see the priorVersion tag in OWL. This tag contains three statements able to describe
general information about the current version of the ontology -owl:versionInfo-, a reference
with a backward-compatible ontology -owl:backwardCompatibleWith-, and a reference with
other ontologies thar are not backward compatible with it).

3.5 Graphical modeling

Several projects tries to use graphical models as semantic networks or UML to define ontologies.
In [2], the gap in the expressibility of UML in order to represent ontologies is closed, and in 2003
the OMG proposed a Ontology Definition Metamodel Request For Proposal [28]. Moreover an
initial incomplete mapping between the UML and DAML (that can be easily extended to OWL)
has been created. In [2] the compatibilities and the incompatibilities between UML and DAML
are listed. The more significant difference is related to the DAML concept of property (that
has the same meaning and the same structure in OWL and consequently the same remarks are
valid in both the languages) is translated into UML. A DAML (UML) ObjectProperty, at a first
glance, appears to be the same as a UML association and a DAML (UML) DatatypeProperty
appears to be the same as a UML Attribute. This is misleading, since the DAML (UML) notion
of ObjectProperty is a first-class modeling element, while UML associations are not. More
precisely, an ObjectProperty can exist without specifying any classes that might relate, i.e. it
can exist independently of any classes. On the other hand, in UML an association is defined in
terms of association ends, which must be related to classifiers. Similar remarks apply to DAML
(UML) DatatypeProperties versus UML attributes.

There are some advantages in using UML: the ontology languages are in general lacking
in the expression of processes and behavior (UML provides sequence-diagrams, collaboration
diagrams and activity diagrams). The are some disadvantages: UML is lacking of a formal
semantic, is not web-enabled (e.g. is not based on XML, ...).

Among the proposals, we introduce two research projects building a tool to model ontologies
by means of UML. ArgoUML # is a powerful yet easy-to-use interactive, graphical software design
environment that supports the design, development and documentation of object-oriented soft-
ware applications. ArgoUML (see figure 3) exports the created ontology into different languages
and is an open source project.

Another project is the UML Based Ontology Tool-set (UBOT) ® project building ontology
engineering and natural language processing-based text annotation tools for DAML. UML is used
as a front-end for visualizing and editing DAML ontologies. The approach is to extend UML by
defining a prototype UML profile for DAMIL which maps UML stereotypes to DAML-specific
elements [2]. The UBOT tools use Telelogic Tau UML Suite for editing and generating XMI
that is translated to DAML. The UBOT project has been experimenting with formal methods
to check the consistency of DAML ontologies. The UBOT tools are being evaluated in a satellite
imagery analysis workflow agent application.

*http://argouml.tigris.org/
http://ubot.lockheedmartin.com/
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Figure 3: A screenshot of the ArgoUML tool

3.6 (Multi-) lingual issue

In order to be read by human reader, the ontology terms descriptions may be translated into
different languages. There are two possible ways:

e Lexicalization of the terms: in the building phase, some descriptions for all the terms are
provided in different languages;

Each term of an ontology has to be mapped into an element of a lexical reference ontology
(e.g. WordNet). The use of linguistic ontologies and multilingual ontologies is an integral
component of an ontology management strategy, since it bridges the gap between linguistic
terms and concepts in a domain. There are no common and proved definition for lexical
ontology: in general with ”"lexical ontology” we mean ”if the elements of an ontology
(classes, properties, and individuals, possibly axioms) depend primarily on the acceptance
of existing lexical entries, the ontology can be called "lexical”. WordNet, formal or not,
it’s such a case”®.

The DOGMA approach [16] is similar to the lexicalization approach: an ontology base is a
set of context-specific binary fact types, called lexons: <7v: Terml,Role, Term2>. Here y € T’
is just an abstract context identifier chosen from a set. The lexical terms (Term1, Role, Term?2)
are constructed from a given alphabet; for each v € T'; and each term T occurring in a lexon,
the pair (y, T) specifies exactly a unique concept. The multi-lingual DOGMA approach [6, 5]
consists in introducing a new linguistic identifier, called 1 € L, where L is the linguistic space.

On the other hand, the MOMIS system [3] exploits WordNet (or Multi-WordNet”) in order to
map for each class of the Global Virtual View a corresponding element belonging to WordNet. In
this way a ”well-known” meaning is assigned to each MOMIS concept. Moreover, by exploiting
Multi-WordNet it is possible for each term to have a semi-automatic translation.

Definition given by Gangemi in the ”wordnet mailing list”, 2005
"http:/ /tcc.ite.it/projects/multiwordnet /multiwordnet.php
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4 Ontology languages analysis

In this section, we propose a brief introduction to the main languages developed for defining
ontologies. Such languages will be compared with each other in order to know the different
capabilities and then classified on the basis of the criteria previously introduced.

4.1 Overview of the main ontology languages

Ontolingua. The term Ontolingua refers both to the system and to the language. The Ontolin-
gua language is based on KIF (Knowledge Interchange Format) [12] and the Frame Ontology [14].
KIF has a declarative semantic and is based on lrst-order predicate calculus. It provides def-
initions for object, function, relation and logical constants. KIF is a language for knowledge
exchange, and is tedious to use for the development of ontologies. Thus, the Frame Ontology is
built on top of KIF, and provides definitions for object-oriented and frame-language terms, like
class, subclass-of,and instance-of.

OCML (Operational Conceptual Modeling Language). OCML was developed and is
maintained by the Knowledge Media Institute (KMI) in context of the VITAL project [30]. Its
primary purpose is to provide operational knowledge modeling facilities and to achieve this, it
includes interpreters for functional and control terms. OCML provides mechanisms for defining
relations, functions, classes, instances, rules and procedures. It can be viewed to some extent as
"operational ontolingua”, which provides theorem proving and function evaluation mechanisms
for Ontolingua constructs. OCML provides a set of base ontologies that forms a rich modeling
platform for building other ontologies: meta, functions, relations, sets, numbers, lists, strings,
mapping, frames, inferences, environment and task-method.

LOOM. Loom [22] is a knowledge representation and reasoning system based on description
logic. The University of Southern California’s Information Sciences Institute (IST) began the
development in the late 80s, under DARPA sponsorship. A distinguished feature of description
logic is that classes (concepts) can be defined in terms of descriptions that specify the properties
or restrictions, which objects must satisfy in order to belong to the concept. One of the primary
tasks of DL based system, like Loom, is to compute subsumption relationships between descrip-
tions, and organize them into taxonomies. To achieve automatic derivation of taxonomies, Loom
offers both a language for the description of objects and relationships, and an assertion language
for specifying constraints on the concepts and relations. Loom provides powerful deductive rea-
soning with underlying production and classification-based inference capabilities.

F-logic (Frame Logic). F-logic [18] was developed in the late 80s. It is a logic language
integrated with object-oriented or frame-based paradigm. Some fundamental concepts from
object-oriented languages have a direct representation in F-logic, for example class, method,
types and inheritance, and other secondary aspects, like polymorphism, can be easily modeled
as well. There are many similarities between F-logic and Ontolingua, since they both try to
integrate frames into logical framework. A difference is that F-logic lacks the powerful reifi-
cation mechanism Ontolingua inherits from KIF, which allows the use of formulas as terms of
meta-formulas.

XOL (XML-Based Ontology Exchange Language). XOL [17] was originally created to
exchange ontologies for molecular biology. It provides a general definition that makes it ap-
propriate for exchange of other ontologies as well. The modeling primitives and semantics are
based on OKBC- Lite (a simplified form of OKBC knowledge model). In XOL, slots are to some
extent treated as second-class citizens, which results in no support for slot hierarchies and weak
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specification of relationships.

SHOE (Simple HTML Ontology Extensions). SHOE [21] is an extension of HTML to
incorporate semantic knowledge in ordinary web documents by annotating html pages. SHOE
provides modeling primitives to both specify and extend ontologies and to annotate web pages.
Each page will declare which ontologies they are using, and thus make it possible for agents,
which are aware of the semantics, to perform more intelligent searching. SHOE provides cate-
gories (classes), relations, inference rules, and rules to specify ontologies.

RDF (Resource Description Framework). RDF [20] is an infrastructure for encoding,
exchange and reuse of structured metadata, proposed also by W3C. RDF provides a standard
form for representing metadata in XML. The RDF data model consists of three object types:
resources (subjects; available or imaginable entity), properties (predicates; describing the re-
sources) and statements (objects; assigning a value for a property in a resource). RDF doesn’t
have any mechanisms for defining relationships between these, but the RDF Schema Specifica-
tion Language (RDFS) does. RDFS can be used directly to describe ontologies, although its
main intention is not for ontology specification. RDFS provides a set of modeling primitives for
defining ontology (class, resource, property, is-a and element-of relationship etc.) and a standard
way to encode them into XML. But RDFS has a rather limited expressive power, since axioms
cannot be directly defined. Moreover, a number of other features are missing: it is not possible
to declare local scopes of properties (range or domain restrictions that apply to some classes
only), to define the disjointness of classes, to build new classes by combining other classes using
union, intersection and complement, to define cardinality restrictions, and finally to describe
special characteristic of properties (e.g. we may say that a property is transitive, unique or
inverse of another property). We can see here the relation between ontology and RDF(s) is
much closer than that between ontology and XML.

OWL (Ontology Web Language) [31] is a component of the Semantic Web activity. OWL
makes an open world assumption. That is, descriptions of resources are not confined to a single
file or scope. New information cannot retract previous information. New information can be
contradictory, but facts and entailments can only be added, never deleted. The possibility of
such contradictions is something the designer of an ontology needs to take into consideration.
It is expected that tool support will help detect such cases. In order to write an ontology that
can be interpreted unambiguously and used by software agents we require a syntax and formal
semantics for OWL. OWL is a vocabulary extension of RDF.

ODL;: [4]. ODLys is very close to the ODL language. ODLjz is a source independent language
used for information extraction to describe heterogeneous information in a common way. ODLy3
introduces the following main extensions with respect to ODL: Union constructor(to express
alternative data structures), Optional constructor (to specify that an attribute is optional for an
instance), Terminological relationships(they express intra and inter-schema knowledge). Rules
(2 kinds of rules were introduced in ODLjs : if then and rules mapping rules)

4.2 Ontology languages analysis

In [8, 13], the authors provide a detailed comparison of the languages introduced in section 4.1.
This comparison is carried out highlighting the capabilities of each language in satisfying the
following criteria:

e Concepts (classes, objects or categories)

— Partition definition: the possibility of an instance to be an instance of two concepts
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belonging to a partition
— Documentation definition: the possibility to include some comments to the ontology
— Concept attribute definition (slots or functions or properties). Different kinds of
attributes may be identified:
x Instance attributes: whose value allow distinguishing a specific instance of a
certain instance from other instances
x Class attributes: whose value is attached to the concept
x Local attributes: same name attributes attached to different concepts
x Global attributes: whose domain is not specified
— Predefined facets for attributes:
x Default value slot
x Type
x Cardinality

* Slot documentation

e Taxonomies (is-a, class inclusion, subsumption) on different kind of relations (generaliza-
tion, specialization, subset hierarchy) according to the constraints involved in multiple
taxonomic relationships (covering, partition, ...)

— Subclass of (subsumption relationship)

Disjoint decomposition (partition where all concepts are subclasses of a common
concept) (they can not be complete)

— Exhaustive subclass decomposition: complete disjoint decomposition

Not subclass of

e Relations: interactions between concepts of the domain and attributes and Functions:
special kind of relation where the value of the last argument is unique for a list of values
of the n-1 preceding arguments

— Arbitrary n-ary relation or function definition
— Type of arguments constrained

— Definition of integrity constraints in order to check the correctness of the arguments
value

— Operational definition to infer values of arguments with procedures, formulas, ...
e Axioms (or assertions): sentences that are always true
e Instances: elements in the domain attached to a specific concept

— Instances of concepts definitions (membership conditions)
— Instances of relations definitions (facts)

— Claims (assertions of a fact made by an instance) definition

The results of this study is summerized in a table proposed in Figure 4. The table, extended

from [8, 13] taking into account the ODL;s language, by means of an interesting synoptic view of
the languages, points out that each language has a different expressive power, and consequently,

it is suitable for a specific purpose.

Other researches propose different languages classifications. For example in [33] different

analysis criteria are established: domain representation appropriateness, comprehensibility ap-
propriateness and technical actor interpretation appropriateness. Figure 5 where S states for
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structural, F functional , B behavioral, R rule, O object, C communication and AR actor-role,
shows the results of the work.

The tables comparing languages demonstrate that the ontology languages focus os specific
aspects and then the developer has to select the specific language for the specific goal. Next
table offers a qualitative analysis for some of the proposed languages with respect to the six area
we individuated in section. In particular we gave the same rate to ODL;s for the knowledge
representation. RDF does not provide any mechanism to manage inference and reuse. ODLj3
provides by means of the MOMIS tool an approach to the dynamics management but the
language does not present any particular extension for it. On the other hand, OWL defines only
a tag to manage the different versions. Finally, we gave a better rate to ODLjs in multi lingual
management due to its intrinsic possibility to interact with (Multi-) WordNet.

RDF | OWL | ODL;s
1) Domain Knowledge + + +
2) Inference Mechanism n.a. + +
3) Reuse and Integration n.a. - -
4) Dynamic Management n.a. - -
5) Graphical Modeling® + + +
6) Multilingual management | n.a. - +

Table 1: Qualitative analysis on the basis of the six area individuated

Table 1 highlights that no language is able to cover all the requirements. For this reason, in
order to chose the correct language, the developer has to analyze the domain where it will be
used and the applications to be implemented, or hi has to extend a standard language.

5 Conclusions

The analysis of the developed languages and the papers comparing them indicate that no lan-
guage fully satisfy the requirements for an ontology web language. Consequently, the evaluation
for an ontology language is strongly connected to the use of the ontology.

The Wisdom goal is to develop intelligent techniques and tools, based on domain ontologies,
to perform effective and efficient information search on the WEB. In particular, the Wisdom
project aims at developing systems for retrieving information both from data-intensive and
unstructured site/web pages, in an integrated and efficient way.

For these reasons the ontology language has to be expressive enough to represent mappings
between heterogeneous independently developed ontologies and has to manage the ontology
evolution due to the integration of a new information source. Deliverable D2.R1, Critical anal-
ysis of languages and mapping techniques, analyzes the requirements for a mapping language,
D1.R2: Definition of the language and techniques for domain ontology specification will define
the language for the project.

Finally, independently of the language will be chosen for Wisdom, the interoperability with
other languages and sources is an importantant task. With reference with ODL;s the inter-
operability with the W3C standard languages is guaranteed by means of translation rules, we
propose in appendix A.
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Comparison between ODL;;: and OWL

The following tables show a comparison between the ODL;s language and OWL both Lite and
DL. In particular, we show the main difference (within OWL Lite many operators similar to
ODL;s operators are not defined) and we define the rules to translate one language into another
one. By means of the prefix sew: we define the new features needed to translate all the terms.

17



Terms ODL;3

| Terms OWL DL

| Terms OWL Lite

| Logic Interpretation

- owl:Thing owl:Thing set of all the instances
- owl:Nothing owl:Nothing empty set
interface owl:Class owl:Class class concepts
(intensional)
view owl:Class owl:Class view concept
isa rdfs:subClassOf rdfs:subClassOf estensional hierarchy
rdfs:subPropertyOf (classes or restrinctions)
Ntegt rdfs:subClassOf rdfs:subClassOf estenstiona hierarchy
btexs rdfs:subPropertyOf (classes or restrinctions)
SYNegt owl:equivalentClass owl:equivalentClass equivalence
owl:equivalentProperty (classes or restrinctions) | estensional
and owl:intersectionOf owl:intersectionOf intersection
(classes or restrinctions)
union owl:unionOf union
enum owl:DataRange...owl:oneOf | — enumeration
. rdf:List...rdf:Rest
range owl:DataRange...owl:oneOf | — range
. rdf:List...rdf:Rest
(restricted range)
owl:complement Of negation
- owl:disjointWith - disjunction
estentional
bt sew:ThesRelation... sew:ThesRelation... intensional Hypernym
sew:RelType...bt sew:RelType...bt (ODL;s)
nt sew:ThesRelation... sew:ThesRelation... intensional hyponym
sew:RelType...nt sew:RelType...nt (ODL;s)
rt sew:ThesRelation... sew:ThesRelation... association (ODL;z)
sew:RelType...rt sew:RelType...rt
syn sew:ThesRelation... sew:ThesRelation... intensional synonym

sew:RelType...syn

sew:RelType...syn

(ODL;s)

Table 2: Comparison between ODLs and OWL
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Terms ODL;s

Terms OWL DL

Terms OWL Lite

| Logic Interpretation

owl:sameAs
(for instances only)

owl:sameAs
(for instances only)

equivalence among instances

owl:different From

owl:differentFrom

difference from
instances

owl:AllDifferent...
owl:distinctMembers

owl:AllDifferent...
owl:distinctMembers

difference from
instances

attribute DomainType
”Interface or View”

owl:ObjectProperty

owl:ObjectProperty

relationship between instances

attribute DomainType
"DataType”

owl:DatatypeProperty

owl:DatatypeProperty

relationship between instances
and a value

attribute

rdfs:domain

rdfs:domain (classes only)

property subject

attribute Domain

rdfs:range

rdfs:range (only classes)

property object

rdfs:subPropertyOf

rdfs:subProperty Of

property hierarchy

owl:equivalentProperty

owl:equivalentProperty

estensional equivalence
among properties

relationship...inverse

owl:inverseOf
(Object properties)

owl:inverseOf
(Object properties)

inverse property

relationship...inverse

owl:SymmetricProperty
(Object properties)

owl:SymmetricProperty
(Object properties)

symmetric property
(equal to the inverse property)

key (single)

owl:FunctionalProperty +
owl:Cardinality (1)

owl:FunctionalProperty +
owl:Cardinality (1)

functional property
cardinality restriction

key (multiple values)

sew:Key

sew:Key

concetto di chiave
(ODL;3)

foreign key...

rdfs:subPropertyOf

rdfs:subPropertyOf

key concept

references KEY Properties KEY Properties foreign key (ODL;3)
owl:TransitiveProperty owl: TransitiveProperty transitive property
(Object properties) (Object properties)

*

owl:minCardinality = 0
owl:maxCardinality = 1

owl:minCardinality = 0
owl:maxCardinality = 1

optional attribute

Table 3: Comparison between ODLs and OWL
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Terms ODL;3 |

Terms OWL DL

| Terms OWL Lite

| Logic Interpretation

attribute set owl:allValuesFrom owl:allValuesFrom universal

forall (classes or data range) (classes) quantification

exists owl:someValuesFrom owl:someValuesFrom esistential

(classes or data range) (classes) quantificator

- owl:hasValue - universal
instance quantification

- owl:minCardinality owl:minCardinality(0,1) | minimal cardinality

- owl:maxCardinality owl:maxCardinality(0,1) | maximal cardinality

FixedArraySize | owl:Cardinality owl:Cardinality(0,1) maximal and minimal
cardinality

rule owl:Restriction... owl:Restriction... properties restriction

owl:onProperty

owl:onProperty

mapping rule

URI reference

URI reference

relationship between integrated
schema and local sources

owl:AnnotationProperty
owl:versionInfo
rdfs:label

rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy

owl:AnnotationProperty
owl:versionInfo
rdfs:label

rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy

Properties for the document
annotation with respect to
the Dublin Core metadataset

owl:Ontology...
owl:imports

owl:Ontology...
owl:imports

importing of an ontology
(transitive)

owl:Ontology...
owl:priorVersion

owl:Ontology...
owl:priorVersion

reference to the previous
version of an ontology

owl:Ontology...
owl:backwardCompati-
bleWith

owl:Ontology...
owl:backwardCompati-
bleWith

reference to a consistent
version of an
ontology

owl:Ontology...
incompatibleWith

owl:Ontology...
incompatibleWith

reference to a not

consistent ontology

Table 4: Comparison between ODL;s and OWL

Terms ODL;; |

Terms OWL DL

| Terms OWL Lite

| Logic Interpretation

owl:DeprecatedClass owl:DeprecatedClass deprecated
class

owl:DeprecatedProperty owl:DeprecatedProperty | deprecated
property

sew:lemmaValue

sew:lemmaSyntacticCate- | —

gory terminological

wnAnnotation sew:lemmaSenseNumber annotation

sew:nodeUri - respect WordNet

sew:ontoVersionInfo -

sew:ontoCreator

Table 5: Comparison between ODLys and OWL
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Onto- | OCML | LOOM | FLogic | XOL | SHOE | OML | RDE(S) | OWL | ODLI3
lingua
Concepts
General Issues
Partitions + - + +- - - + - + +
Documentation + + + +- + + + + + T
Attributes
Instance + - + + + + + + T T
attribute
Class aftnibute + + + + + - + - + T
Local scope + + + + + + + T T T
Global scope + + + - + - + + + T
Facets
Default slot - + + + + - - - B -
value
Type + + + + + + + T T T
Cardinalify + + + +- - i + B + B
Slot doc. +- +- + - + + + + + +
Taxenomues
Subclass of + + + + + + + + + s
Exhaustive + +- + +- - - + _ + _
decomposition
Disjomt + +- + +- - - + _ + _
decomposition
Not subclass of | +- - +- - - - - N + -
Relattons and
Functions
n-ary relations/ + + + +- + + + +- + .
functions
Type + + + + + + + + T ¥
consfraints
Integrity + + + + - - _ _ _ N
consfraints
Operational - + + + - - _ z _ T
definitions
Axioms
17 order logic + + + + - - N N T <
2™ order logic - - - - - . N N N N
Independent + + - - . _ Z - _ ¥
axioms
Embedded +- + + - - - T _ R -
axioms
Instances
Instances of + + + + + + I ¥ T __
concepts
Facts + + + + + + + + T .
Claims - - - - - + _ + ' _

Figure 4: Languages comparison extended from [13]
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Cycl |Ontolineua| F-Loge | OCML | TOOM | Telos | BDFS) | OIL |ppavi-orn] XoL | SHOE
| B | o | g Medinn | Mediome | Medium | High | Medum. | Medimn- | Medium+ | Madium | Medium
Domain Power
- o S0P SOR-

Ferspecives| SO-R | SO+ | SO+R | “¢™ | so+R | 355 | SOR | SOR- | SOR- [soR | soRr

eumbetf| Lage | Lume | Median | Medion | Medium | Mediums | Small | Small | Medum | Mediven | Seall
\Commpreben=ibliy Cht Tl Cha &T Ch Cia Ca Cha Cla Tl Cha
sppropnateress | Abstachion | Genr | Gent Gerr Gen+ Gerr- Gen+ Gen- Gen Gen Gen- Gen-
Mechanwm | Age | Asg | Age | Apz | Am | Am | Asm | Am | Ame | Ase | A

Axg Ass A 5 Ass Ass Asg Ass A Asy Asg

Eﬁ Yes Yes Vs Yes Yes Yes Yes Yes Yes Yes Yes

Yechncad ador Sle Yes Yeu Yes Yes Yes Yes Ve Yes Yes- Mo Yee
s moee | weak | Mo | Geod | Good | Good | Good | Mo | Good | Possbie | No | Good
: Feak 4 k- t

Cmu . Good | Good | Good | Good | Good | Good | Wek | Wesk | Weak | Weako | Weak

Figure 5: Languages comparison in [33]
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