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Abstract

The Linked Data Principles ratified by Tim-Berners Lee promise that a large por-
tion of Web Data will be usable as one big interlinked RDF (i.e. Resource De-
scription Framework) database. Today, with more than one thousand of Linked
Open Data (LOD) sources available on the Web, we are assisting to an emerging
trend in publication and consumption of LOD datasets. However, the pervasive
use of external resources together with a deficiency in the definition of the inter-
nal structure of a dataset causes that many LOD sources are extremely complex to
understand.

The goal of this thesis is to propose tools and techniques able to reveal the
underlying structure of a generic LOD dataset for promoting the consumption of
this new format of data. In particular, I propose an approach for the automatic
extraction of statistical and structural information from a LOD source and the
creation of a set of indexes (i.e. Statistical Indexes) that enhance the description
of the dataset. By using this structural information, I defined two models able to
effectively describe the structure of a generic RDF dataset: Schema Summary and
Clustered Schema Summary. The Schema Summary contains all the main clas-
ses and properties used within the datasets, whether they are taken from external
vocabularies or not. The Clustered Schema Summary, suitable for large LOD da-
tasets, provides a more high-level view of the classes and the properties used by
gathering together classes that are object of multiple instantiations. All these ef-
forts allowed the development of a tool called LODeX able to provide a high-level
summarization of a LOD dataset and a powerful visual query interface to support
users in querying/analyzing an unknown datasets.

All the techniques proposed in this thesis have been extensively evaluated and
compared with the state of the art in their field: a performance evaluation of the
LODeX’s module delegated to the extraction of the indexes is proposed; the tech-
nique of schema summarization has been evaluated according to ontology summa-
rization metrics; finally, LODeX itself has been evaluated inspecting its portability
and usability.

In the second part of the thesis, I present a novel technique called CSA (Con-
text Semantic Analysis) that exploits the information contained in a knowledge
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graph for estimating the similarity between documents. This technique has been
compared with other state of the art measures by using a benchmark containing
documents an measures of similarity provided by human judges.



Sommario

Tim-Berners Lee, quando ha definito i Lineked Data Principles, aveva predetto
che il Web dei dati sarebbe stato utilizzabile come un grande database RDF (Re-
source Description Framework). Oggigiorno, con piú di un migliaio di sorgenti
Linked Open Data (LOD) disponibili online, stiamo assistendo ad un incremento
nel volume delle sorgenti pubblicate. Tuttavia, il continuo utilizzo di risorse ester-
ne e la comune mancanza di una definizione formale della struttura del dataset fa
sí che molte sorgenti LOD siano molto complesse da interpretare ed utilizzare.

Lo scopo di questa tesi e quello di proporre tecniche e strumenti capaci di ri-
velare la struttura di ogni sorgente LOD, al fine di promuovere lutilizzo di questa
nuova tipologia di dati. In particolare viene proposto un approccio per estrarre au-
tomaticamente informazioni strutturali e statistiche da una sorgente LOD andando
a popolare un set di indici, chiamati Statistical Indexes. In seguito saranno propo-
sti due modelli capaci di descrivere in modo sintetico ed efficace la struttura di un
generico dataset RDF: Schema Summary e Clustered Schema Summary. Lo Sche-
ma Summary contiene le classi e le proprietá presenti nel dataset, sia che siano o
meno formalmente definite al interno della sorgente. Il Clustered Schema Sum-
mary, indicato per descrivere grandi dataset, fornisce una visione di piú alto livello
della struttura della sorgente clusterizzando classi che concorrono nel instanzia-
zione multipla di stesse entitá. Tutti questi sforzi sono confluiti nello sviluppo di
un tool chiamato LODeX, il quale ha lo scopo di fornire al utente un riassunto
di alto livello della struttura di una sorgente LOD, fornendo anche la possibilitá
di costruire query visuali in modo tale da supportare lutente nel esplorazione e
lanalisi di un dataset prima sconosciuto.

Tutte le tecniche proposte in questa tesi sono state valutate e confrontate ri-
spetto lo stato del arte nei rispettivi campi: viene proposto una valutazione delle
prestazioni riguardante il modulo di LODeX dedicato al estrazione degl 'indici;
le tecniche di schema summarization sono state valutate secondo metriche propo-
ste nel campo del ontology summarization; infine, si é valutato la portabilitá e l
'usabilitá di LODeX.

Nel ultimo capitolo della tesi viene presentata una nuova tecnica per il calcolo
della similaritá tra documenti, chiamata CSA (Context Semantic Analisys), che
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sfrutta le informazioni contenute in un knowledge graph. Questa tecnica é sta-
ta comparata con altri metodi di stima della similaritá tra documenti utilizzando
un dataset di documenti contenente misure di similaritá espresse da esseri umani
come benchmark.
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Chapter 1

Introduction

The continuous efforts provided by the Semantic Web community in developing

standardized ways for defining semantically rich data, jointly to the Open access

trends, drove the massive publication of datasets as Linked Open Data[BL06].

The main technologies involved in the Linked Data growth are web infrastruc-

tures, like URIs and HTTP, and Semantic Web standards, like RDF[GK04],

RDFS[BG04], OWL[MVH+04] and SPARQL[HS10]. RDF, Resource Descrip-

tion Framework, is the key standard in the Linked Data context, indeed, it al-

lows to represent data according to graph data model. This kind of data model

allows a versatile and powerful way of describing any kind of data, but this duc-

tility leads to complex problematics when we have to work with this kind of data

given that schema information are not usually available. Indeed, the RDFS and

OWL standards are not thought for defining schema constraints on RDF graph, but

they are designed for defining constraints within an ontology for enabling reason-

ing[Wan+04]. However, a peculiar characteristic of the graph data model[Kun90]

is that the structure, even if is not explicitly defined, is implicit in the data itself.

The exploitation of this important concept is the foundation of this thesis which is

divided in two part. The first part contains my main research topic and the second

part is the result of my research effort during a 7 month period that I spent abroad

at the Kno.e.sis research center (Dayton, OH) in the United States.

The first part is composed by 4 Chapters and the focus is the definition of



18 Introduction

a theoretical model, called Schema Summary, with the goal of describing the

structure of a generic LOD source. This model is the foundation upon which I

developed a tool called LODeX[Ben15]. This tool is able to automatically ex-

tract the Schema Summary of a generic RDF source and serve it to the User in

an interactive visualization. LODeX allows also the user of building visual query

upon the Schema Summary and it contains a SPARQL compiler able to trans-

late a visual query in a SPARQL one. This part is divided as follow: Chapter 2

contains the formal definition of the Schema Summary; Chapter 3 describe the

first module of LODeX, the Index Extractor, able to automatically extract indexes

from datasets reachable through a SPARQL interface; Chapter 4 contains the de-

scription of LODeX and the results of several evaluations of the tool, including an

usability evaluation; finally, Chapter 5, contains an extension of the Schema Sum-

mary model, called Clustered Schema Summary, able to represent the structure

of huge datasets; Chapter 5 contains also an evaluation of both Schema Summary

and Clustered Schema Summary according to ontology summarization metrics.

The second part contains only Chapter 6 and it describes a novel technique,

called Context Semantic Analysis. This technique leverages the information con-

tained in a knowledge base, like DBpedia[Aue+07], for representing the context

of a document as a vector. Then, this vector representation can be used for esti-

mating the inter-document similarity based on the context. I combined CSA with

other techniques of similarity based on the text and I evaluated it according to

scores of similarity provided by humans.



Part I

Schema Summary





Chapter 2

The Schema Summary Model

2.1 Introduction

The actual LOD Cloud contains more then one thousand of interlinked datasets

and several billions of RDF triples. The production of Linked Open Data (LOD) is

encouraged by the Linking Open Data community and by the Open Governament

project1. Linked data has become the preferred channel for the dissemination of

e-government data and this results also in the LOD cloud, where one fifth of the

datasets are on government domain 2.

Understanding a large and unfamiliar LOD dataset becomes a key challenge

when reusing it. One of the main reason is that it is often difficult to get the

overall view of a large dataset. This becomes even more problematic when users

have barely knowledge of Semantic Web technologies, essentials for interacting

with this kind of source.

A common practice in the Linked Open Data ecosystem is to reuse external

vocabularies, i.e. datasets defined in external sources, for creating a common data

space. This practice has allowed the rise of reference vocabularies in specific

domains: foaf is used to describe people in around the 69% of LOD datasets ; dce

1http://opengovernmentdata.org/
2http://linkeddatacatalog.dws.informatik.uni-mannheim.de/

state/

http://opengovernmentdata.org/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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(Dublin Core Metadata Element Set)3 is used to describe metadata of resources

on the web by more than half of the datasets and skos is used to share and link

knowledge organization systems via the Semantic Web, etc4.

The Semantic Web has provided a schema language such as RDF Schema

(RDFS) and a ontology definition language as OWL which allow for adding rich

semantics to the dataset. However, several LOD datasets do not make an extensive

use of RDFS and OWL, that is, there is an implicit knowledge, hidden in the

datasets, that is not described by RDFS or OWL triples. This behavior is primarily

due to automatic translation of dataset to the RDF data model from other data

model (i.e. Relational data model). Figure 2.1 exemplify this problem: here, the

property dbpedia:fax (taken from the external source, dbpedia) links an instance

of the class organization to its fax value. This means that an organization could

have data about the fax, however, this information is not conveyed by any RDFS

triples, thus it is completely absent in the intensional knowledge of the dataset.

The use of resources (classes and properties) defined externally causes that

many LOD sources are extremely complex to understand, since the user can not

have a precise overview of the classes and properties used within the dataset with-

out manually explore the source through SPARQL queries. Figure 2.2 reports

the number of external resources (classes/properties) used in a dataset that are

not contained in the intensional knowledge (i.e. not formally defined internally).

More than a half of the datasets use at least 90% of external classes and prop-

erties5, thus, it is easy to understand why the representation of the sole internal

content of a LOD source miserably fails in providing an overall representation of

the dataset.

These observations are the motivations behind my work of defining a model

for the creation of a representative Schema Summary for a LOD sources aiming to

facilitate the understanding of an unknown source and help users in making sense

of an unfamiliar dataset. In this Chapter, I first explain the distinction between

3http://dublincore.org/documents/dces
4These statistics are reported in http://linkeddatacatalog.dws.informatik.

uni-mannheim.de/state/
5The graphs are drawn starting from the analysis conducted on 185 LOD datasets.

http://dublincore.org/documents/dces
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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Figure 2.1: Example of content of a generic RDF graph belonging to the LOD
cloud.

intensional and extensional knowledge, then, I present the theoretical definition

of the Schema Summary, a model that conveys the implicit structure of the LOD

dataset, by including the main classes and the properties used in it.

2.2 Intensional and Extensional Knowledge in LOD

sources

The LOD Cloud consists of a huge number of SPARQL endpoints, each aim-

ing to describe a knowledge base of a specific domain. The language used to

describe data is RDF, while RDFS and OWL are used to represent intensional

knowledge[PH04][HM03].

I can think the entire set of RDF triples partitioned between intensional knowl-

edge and extensional knowledge. The triples belonging to the intensional knowl-

edge define the terminology used in the dataset; they are expressed in RDF, how-

ever, they can be usually interpreted through RDFS or OWL and seen, with some
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Figure 2.2: Percentage distribution of external classes/properties used in the
LOD datasets.

Figure 2.3: Data structure of a generic LOD dataset

restrictions, as the T-Box components of the knowledge base described in the end-

point[LN94]. The extensional knowledge triples usually cover most of the datasets

and contain the entities of the real world described in the dataset. Usually, the

extensional knowledge is described through RDF instances which compose the

A-box of the knowledge base[LN94].

These two kinds of knowledge are distinct, according to their semantic mean-

ing, but they are joint forming a unique RDF graph. These two portion are con-

nected by particular classes, that I call extensional classes, usually defined in in-

tensional knowledge and instantiated in extensional one that act as a bridge among

the two resources (as represented in Figure 2.3 and is shown in an example in Fig-

ure 2.3).

A well designed dataset should contain both intensional and extensional
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knowledge, however by analyzing a large number of endpoints I have observed

that this is generally not true. Sometimes, LOD datasets are biased toward a kind

of knowledge (intensional or extensional). For example, there are LOD sources

containing ontologies with low number of instances, on the other hand, some

datasets include only one type class (owl:Class) and a large number of instances

that are improperly used as such. In a lot of cases, LOD datasets define only

the extensional knowledge, thus they do not include the description of the used

vocabulary within instances (i.e. this happens quite often when Open Data are

published as RDF sources). These design issues are mainly caused by a large

use of automated translation tools. For example, there are plenty of techniques

for generating an OWL version of an ontology expressed with other standards as

DAML+OIL[Hor+02] or RRF[Fie+04] and also the W3C consortium is spending

many efforts in defining technologies able to translate data contained in Relational

Databases into the RDF data model, called RDB2RDF6[Sah+09].

2.3 Model definition

Each RDF graph is composed by a set vertices V and a set of labeled edges E.

The vertices can be divided in 3 disjoint sets: the URIs U , the blank nodes B

and literals L. Two vertices connected by an edge represent a statement. Each

statement is stored into a <subject,predicate,object> triple, where subject ∈ U ∪
B, object ∈ V and predicate ∈ E. I can define the whole RDF graph, according

to [CWL14], as a set of triples RG.

Definition 1 RG ⊆ (U ∪B)× E × V

Each triple belonging to an RDF graph defines a relation between two nodes,

and the kind of relation is made explicit through the value of the property. In

particular, the RDF property rdf:type is used to state that a certain resource is an

instance of a class. I can define the set of classes (Cs).

Definition 2 Cs = {c|<i,rdf:type,c>∈ RG ∧ i ∈ (U ∪B)}
6http://www.w3.org/2001/sw/rdb2rdf
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Figure 2.4: Subject and Object Path

Looking at the triples belonging to the extensional knowledge, I can find three

main patterns that are responsible for defining the structure of the data contained

in it. I call these patterns: Subject Class (Sc), Subject Class to literal (Scl) and

Object Class (Oc). A graphical representation of these patterns is shown in Figure

2.4, while the formal definition is given in the following.

Definition 3 Sc = {(c, p)|<i,rdf:type,c>∈ RG∧<i,p,u>∈ RG ∧ i ∈ (U ∪ B) ∧
u ∈ (U ∪B)}

Definition 4 Scl = {(c, p)|<i,rdf:type,c>∈ RG∧<i,p,l>∈ RG∧i ∈ (U∪B)∧l ∈
(L)}

Definition 5 Oc = {(c, p)|<i,rdf:type,c>∈ RG∧<u,p,i>∈ RG ∧ i ∈ (U ∪ B) ∧
u ∈ (U ∪B)}

The patterns extracted on the example of Figure 2.1 are presented in Table 2.1.

Table 2.1: Extracted patterns from the example on Figure 2.1

Name Values

Cs
{ owl:Class, rdf:Prop, foaf:Organization,

ex:Sector, owl:ObjectProperty }

Sc
{ (foaf:Organization,ex:sector), (owl:Class,rdfs:label),
(rdf:Property,rdfs:label), (rdfs:Property,rdfs:domain),

(owl:ObjectProperty,rdfs:label), (owl:ObjectProperty,rdfs:domain) }

Scl
{ (ex:Sector,dc:title), (foaf:Organization,ex:activity),

(foaf:Organization,dbpedia:fax) }
Oc { (ex:Sector,ex:sector) }
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The Sc, Scl and Oc patterns unveil all the classes and the properties used

within the dataset even if they are not explicitly defined in the intensional knowl-

edge. These information enrich the comprehension of the source itself and are

used as input in the building of the Schema Summary.

2.3.1 Schema Summary

Definition 6 (Schema Summary) A Schema Summary S, derived from a RDF

dataset, is a pseudograph: S = <C, P, s, o, A, m,Σl, l, count>, where:

• C contains a set of c, where c is a Class of the RDF dataset. The elements

of C represent the node of the pseudograph.

• P contains the properties between Classes of the RDF dataset. The elements

of P represent the edges of the pseudograph.

• s: P→ C is a function that assigns to each property p ∈ P its source class

c ∈ C.

• o: P→ C is a function that assigns to each property p ∈ P its object class c

∈ C.

• A contains the attributes of Classes of the RDF dataset.

• m: A→ C is a function that maps each attribute a ∈ A to the class c ∈ C to

which it refers.

• Σl is the finite alphabet of the available labels.

• l: (C ∪ P ∪ A) → Σl is a function that assigns to each class, property or

attribute its label.

• count: (C ∪ P ∪ A) → N is a function that assigns to each property or

attribute the number of times it appears in the RDF dataset, and to each

class the number of instances of the class itself.
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Data: Sc, Scl, Oc, Cs, count
Result: S(SchemaSummary)

1 S=∅;
2 Filter(Sc,Scl,Oc);
3 forall the sc ∈ Sc do
4 if sc.c ∈ Cs and ∃oc ∈ Oc | sc.p = oc.p then
5 if sc.c /∈ S.Σl then
6 find c ∈ Cs where c = sc.c;
7 add to S.count(c) count(c);
8 add c to S.C;
9 add c to S.Σl and create mapping in S.l;

10 end
11 if oc.c /∈ S.Σl then
12 find c ∈ Cs where c = oc.c;
13 add to S.count(c) count(c);
14 add c to S.C;
15 add c to S.Σl and create mapping in S.l;
16 end
17 n=MIN(count(sc),count(oc));
18 p =sc.p, add p to S.P ;
19 add mapping in S.s and S.o;
20 add to S.count(p) n;
21 add p to S.Σl and create mapping in S.l;
22 decrease count(sc) and count(oc) of n;
23 if count(sc) or count(oc) = 0 then
24 remove this element from Sc or Oc;
25 end
26 end
27 end
28 forall the scl ∈ Scl do
29 if scl.c ∈ Cs then
30 a = scl.p, add a to S.A;
31 add mapping in S.m from S.C(scl.c) to a;
32 add a to S.Σl and create mapping in S.l;
33 add to S.count(a) count(scl);
34 end
35 end

Algorithm 1: Schema Summary generation algorithm
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The SC, SCl, OC, Cs and the function count(), able to return the number of

occurrences for each pattern, are the input of the Schema Summary generation

algorithm, while the output is a a pseudograph S.

Before executing the core of the algorithm, it is necessary to filter some ele-

ments of the input indexes (as reported in line 2). In particular, I filter the elements

that belongs to the intensional knowledge.

The core of the generation algorithm is situated from line 3 to line 27 of the

Algorithm 1, where Sc and Oc are combined in order to discover the nodes and

edges belonging to pseudograph S; in this phase the alphabet Σl and all the map-

ping functions are populated . A key role is played by the number of occurrences

for the paths in Sc and Oc. In fact, thanks to this value it is possible to know

how many properties coming from instances of a Subject Class are directed to

instances of an Object Class. If elements of Sc and Oc correspond, through their

property, their value of n are decremented. Finally (from line 28 to 35), the list

of attributes (A) with the respective labels and mappings are populated using the

information contained in Scl.

Figure 2.5: Schema Summary generated starting from the example of Figure 2.1.

Figure 2.5 depicts the Schema Summary derived from the datasets of Fig-

ure 2.1. The white circles represents the classes (C), while the attributes (A)

are shown in the gray boxes. The edge depicts a property (P ). Each element is

equipped with a numerical value representing the number of occurrences (or the

number of instances for the classes).
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Chapter 3

Online Index Extraction from
Linked Data Sources

3.1 Introduction

The possibility to expose any sort of data on the Web by exploiting a consol-

idated group of technologies of the Semantic Web Stack[Biz+08] is one of the

main strengths of Linked Open Data. Several portals catalog LOD datasets on

the Web; one of the main globally available Open Data catalogues is The Data

Hub (formerly CKAN)1. These resources allow users to perform keyword search

over the metadata associated to their list of LOD sources, but they do not provide

search techniques based on structural information of these sources. As mention

in[Jai+10], there is still a “lack of conceptual description of datasets". The docu-

mentation of a LOD source is produced by who published the data and, in many

cases, it is incomplete or absent. Therefore, usage of LOD datasets requires a

human being to identify the domain of the datasets and discriminate if they are

relevant for his/her needs (usually by performing SPARQL queries).

The first step for making available the Schema Summary for each LOD dataset

of the LOD cloud is define an automatic way for indexing these latter. In this

Chapter, I define a set of indexes, called Statistical Indexes, able to structurally

1http://datahub.io
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describe the source. The Statistical Indexes contain statistical information re-

garding both the intensional and extensional knowledge of a LOD source. The

intensional knowledge contains the RDFS/OWL triples used to define a vocabu-

lary or an ontology. The extensional knowledge is characterized by the instanti-

ated classes, the properties between them and some graph patterns (ingoing and

outgoing properties from instances of a specific class). Usually, the intensional

knowledge is defined as the terminology used for characterizing the assertions,

i.e. the extensional knowledge. As reported in [Got+12; AG05], the structure of

an RDF source is implicitly defined by its set of triples; information about the

schema resides explicitly in the instantiation of the classes and implicitly in the

use of the properties among these.

The indexes can have different uses, but primarily they represent a good docu-

mentation of the dataset to which they refer. Indeed, a knowledge engineer might

be interested to describe a specific environment by reusing available vocabularies

or ontologies if he/she easily understands their intensional contents. Otherwise,

a data scientist can explore the lists of elements characterizing the extensional

knowledge (e.g. occurrence of outgoing properties from a particular type of in-

stances) of a specific dataset to easily build the SPARQL queries he/she needs to

extract the data he/she is looking for. The Statistical Indexes can also be used

with other purposes: to support search engines (e.g DataHub) for dataset selec-

tion according to the ingoing or outgoing properties from instances of a classes

ranked according to the number of occurrences or to support tools able to generate

queries. In this Chapter, it is also described a software component, called Index

Extractor, able to automatically extract the Statistical Indexes. The Index Extrac-

tor only deals with SPARQL endpoints, differently from other approaches that

work with a dump of the RDF Database stored locally (e.g. [Kon+12], [Aue+12]

and [CPF13]). This choice has been made in order to develop a module able to

work as an online service. The Index Extractor takes as input just the URL of a

SPARQL endpoint and produces the necessary queries for extracting the Statisti-

cal Indexes. One of the main problems I encounter when dealing with SPARQL

endpoints is the heterogeneity on the performance of different implementations of
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SPARQL endpoint. Indeed, it happens that several SPARQL aggregation queries

may trigger timeout errors; the Index Extractor handles this problem by generating

an higher number of low-complexity queries able to return the same information

into smaller chunks of data. I called this mechanisms pattern strategy, and it will

be described in Section 3.4.1.

This Chapter is structured as follows. Next Section outlines some relevant

works connected to this topic or papers that have inspired the development of

this tool. An overview of the Index Extractor and its architecture is depicted in

Section 3.3. Section 3.4 details the extraction of the Statistical Indexes. In Section

3.5 some tests are reported and finally, conclusions and some ideas for future work

are described in Section 3.6.

3.2 Related Work

In the literature, I can find several works in which a summary or a set of descrip-

tors are extracted from a LOD source. In [CPF13], authors divide these techniques

in two groups, triples-level and instances-level summaries, according to the gran-

ularity with which the sources are scanned and indexed.

The triples-level techniques inspect the content of the RDF dataset scanning

each triple, and then they usually build an index containing statistical information

regarding the type of these triples. SchemEx [Kon+12] is an example of work

belonging to this group; here, dumps of RDF graphs are indexed for supporting

the definition of queries by users. Differently from the techniques described in

this Chapter, this approach does not consider the class instances, thus it is also not

able to retrieve the properties among classes.

RDFstats[LW09], instead, defines a vocabulary and an algorithm able to col-

lects statistics about the triples belonging to an RDF dataset that can be used to

build histograms and document the source. The information extracted by RDF-

stats has a low granularity and it can not be used as documentation of a RDF

dataset, because it does not contain any sort of structural information about the

RDF source. Another valuable example of these works is LODStats[Aue+12].
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Here, RDF graphs are scanned at triple level and in the post-processing phase,

structural information such as the class and property hierarchies are discovered.

In the instance-level approach, an RDF graph is inspected by taking into ac-

count RDF, RDFS and OWL primitives and their semantics, in order to detect

structural information pervasive in the source. In this group I can find two im-

portant works [Har+10; PKK12] in which the proposed instance-level summary

can support efficient and federated query evaluation. Another valuable example of

this group is [BL12] in which an approach that allows to enrich knowledge bases

with OWL2 axioms is described. The information extracted by [BL12] overlaps

the intensional knowledge that can be present within the triples of a dataset; the

Index Extractor is able to extract the triples belonging the intensional knowledge

through an ad-hoc algorithm, reducing the time and the complexity of this task.

All these techniques have been tested using a small number of datasets and

they take as input the dump of an RDF graph; instead, the Index Extractor has

been designed to be used with a wide number of SPARQL endpoints in an online

environment.

The most important example of LOD indexes are the Void descrip-

tors[Ale+09]. The Void descriptors are a W3C standard used for expressing meta-

data about RDF datasets. In particular, they are primarily used to describe links

among different datasets rather than the structure of the dataset itself. Despite

they report valuable information, their production is demanded to the publisher

of the LOD dataset, thus, only the 13.82%2 of datasets are equipped with VOID

descriptors. The Statistical Indexes include some VOID descriptors but they con-

tain further indexes to supply more detailed information about the structure of the

dataset.

3.3 Architectural Overview

The Index Extractor aims to be totally automatic in the extraction and production

of the indexes. Therefore, it does not require any kind of a priori knowledge about

2http://sparqles.okfn.org/discoverability
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Figure 3.1: Index Extractor architecture

the dataset on which it works.

Figure 3.1 illustrates the architecture of the Index Extractor (IE). The com-

ponent takes as input just the URL of a SPARQL endpoint and then it performs

a set of steps with the goal of generating the queries, able to extract structural

and statistical information about the source. The IE has been designed in order

to maximize the compatibility with LOD sources and minimize the costs in terms

of time and computational complexity. Two different algorithms, based on a set

of SPARQL patterns, have been designed on order to extract the most relevant

intensional and extensional information from heterogeneous LOD datasets. Fi-

nally, the indexes are stored into a NoSQL Database. I have chosen a NoSQL

document database server, MongoDB3[Ban11], because it allows a flexible rep-

resentation of the indexes and, in particular, it can easily manage heterogeneous

lists of elements.

The architecture has been designed to parallel the processing of multiple end-

3https://www.mongodb.org
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points, thus, exploiting the idle times caused by response-time delays of single

endpoints. Moving part of the computational cost of the extraction process on

the endpoint can improve the performance, but it brings some drawbacks. First

of all, a portion of the queries generated by IE needs some operators introduced

with SPARQL 1.1[HS10], thus, an endpoint must be compatible with this stan-

dard. Another issue regards the heterogeneity of the implementation of SPARQL

endpoints that affects their performance. Some endpoints are not able to answer to

some queries before the timeout expires. To avoid these problems, I have limited

the use of SPARQL 1.1 operators and I have defined a particular pattern strategies

to scale the complexity of the queries.

3.4 Index Extraction Process

The Statistical Indexes extracted by the IE component through SPARQL queries4

can be grouped in three categories, according to the kind of knowledge they

stored: Generic, Intensional, Extensional (see also Table 3.1).

Table 3.1: Statistical Indexes. Legend: Cn: class name; Pn: property name; s:
subject; p: property; o: object; n: number of times a path (or a property) exists;

nI: number of instances

Name Description Structure Category
t Number of Triples Integer

Generic
c Number of Instantiated Classes Integer
i Number of Instances Integer

Cl Instantiated Class list List(Cn,nI)
Pl Property list List(Pn,n)
IK Intensional Knowledge Triples List(s,p,o) Intensional
Sc Subject Class List (s,p,n)

ExtensionalScl Subject Class to Literal List (s,p,n)
Oc Object Class List (o,p,n)

In the Generic group, all the information regarding the size and the complexity

of the dataset are reported. In particular, the first three elements (t, c, i) give an

4A complete list of the query patterns is available at http://dbgroup.unimo.it/lodexQueries
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insight of the dimension of the RDF graph; while, the last two components (Cl and

Pl) contain information about the classes and the properties usage. The queries

used to extract these values refer to those used to create the Void Descriptors5 of

a dataset[Ale+09]. As mentioned before in Section 3.2, not all the LOD sources

contains VOID descriptors, therefore, I added them in my list.

The Intensional group contains only the IK index, i.e. the list of all the triples

that characterize the intensional knowledge of the dataset. The queries used to

extract these triples are based on a simple triple pattern (subject, predicate and

object), in which the subject is iteratively replaced with the URIs representing the

constraints of the ontology, this in order to traverse the RDF graph and extract the

intensional knowledge.

The Extensional group contains the information regarding the distribution of

instances within the source. The first two indexes (Sc, Scl) refer to Subject paths

(the first has an URI as object and the second a literal), while the last (Oc) regards

the Object path (see Figure 2.4). Each of these list is described by three elements:

s/o that is a Subject Class/Object Class, p that refers to a property and n that

represent the number of times the path is used in the dataset. A formal description

of these pattern can be found in Section 2.3.

In the first step the IE component tests the connection to the endpoint (as

shown in Figure 3.1) and it also checks the compatibility of the endpoint with

the SPARQL 1.1 operators used in the queries. After this, the first three indexes

(t, c and i) are extracted through simple SPARQL queries. Then, Cl and Pl are

extracted using the pattern strategies for dealing with possible failure of the end-

point. The extraction of the intensional knowledge, such as IK, makes use of an

iterative algorithm. In the end, the Sc, Scl and Oc indexes exploit pattern strate-

gies to increase the success rate of their extraction.

The IE component exploits different patterns through which it can produce

queries of different complexity. With the introduction of the version 1.1 of

SPARQL, it is possible to collect aggregated information about a specific Basic

Graph Patterns (BGP) [HBF09] over an RDF graph using the operator GROUP

5https://code.google.com/p/void-impl/wiki/SPARQLQueriesForStatistics
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BY. However, in many cases endpoints hosting large RDF datasets are not capa-

ble of providing a response before the timeout expires. I have chosen to use a

restricted group of operators to minimize the complexity of the queries generated,

i.e. GROUP BY, FILTER, COUNT, DISTINCT, AND. As stated in [PAG09a], the

evaluation of an expression containing AND and FILTER can be solved in linear

time, while the operator GROUP BY is more expensive in terms of performance.

The pattern strategy technique is able to extract the same information resulting

from complex GROUP BY queries by using a higher number of low-complexity

queries and it will be described in detain in the next Section

3.4.1 Pattern Strategies

I often stumbled across errors triggered by endpoints due to performance issues.

In particular, this problem occurred when extracting the Subject Path (Sc and Scl),
the Object Path (Oc) and in few cases the classes and properties lists (Cl and Pl).
The indexes matching these patterns could be extracted using just one query for

pattern, but this operation has an high cost for the endpoint and, in most cases, a

timeout error occurs. Hence, I have designed a pattern strategy able to handle this

type of error and scale the complexity of the SPARQL 1.1 query.

In Figure 3.2 you can see a representation of the pattern strategy used to com-

plete the extraction of the Sc index. By using the first query, it is possible to

extract all the information in one go. If the endpoint is not able to answer to the

first query, the strategy switches to the second step. In this case, a query for each

class in Cl is generated, then, each successful response returns an element of Sc,

while, if an error occurs the current class is added to the set of ErrClass. At

the end of the second step, if some error still exists, the strategy tries to down-

load the two items that compose each element of Sc (property name, and property

count) separately. Thus, in the third and fourth step the queries are generated for

discovering the properties related to the current class by a Subject Path; this in-

formation is temporarily stored in a list called TmpSc, which is taken as input

by the last step, where the queries are generated for completing the partial results

contained in TmpSc with the information regarding the number of times these
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paths are present in the source graph. It is worth noting that while the first and

second queries exploit the GROUP BY operator, the others do not. Therefore, it

is possible to compute the Sc index even without the GROUP BY operator.

Similar strategies (with different queries) are used to complete the extraction

of Scl,Oc,Cl and Pl indexes.

3.4.2 Intensional Knowledge Extraction Algorithm

Data: Cl, Pl
Result: Ik

1 Qn=∅, Fn=Cl.cn ∪ Pl.pn;
2 while |Qn| < |Fn| do
3 forall the node in Fn - Qn do
4 results←generate query for node and query the endpoint;
5 add node to Qn;
6 forall the r in results do
7 add r to Ik;
8 if r.o is not a Literal then
9 add r.o to Fn;

10 end
11 end
12 end

Algorithm 2: Intensional Knowledge Extraction Algorithm

The intensional knowledge contained in a generic dataset usually consists in

few triples within the dataset with an high information load. Therefore, it is im-

portant to pull out all these triples. To achieve this goal I designed an iterative

algorithm able to traverse the RDF graph and extract the IK index (the pseudo-

code is presented in Algorithm 2)

An iterative algorithm is well suited for traversing any sort of graph, but I

have to properly choose the starting point and the traversing conditions for making

the algorithm efficient and being sure that only the triples desired are extracted.

Moreover, the algorithm has to avoid trespassing in the extensional knowledge

with the risk of downloading the entire graph. Fortunately, I can take advantage

of the structure induced by the RDF standard. Indeed, the instantiation primitive
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of the RDF language is a recognizable triple in which the subject can be a URI or a

blank node, the predicate is rdf:type and the object is an URI (representing a class).

Thus, I can create a group of SPARQL queries using the class list (Cl); each of

these queries will be composed by a simple triple pattern in which I bind each of

the subjects with an element of Cl, and use them to start traversing the portion of

the graph containing the intensional knowledge. Moreover, in order to include the

formal definition of properties, it is necessary to generate a set SPARQL queries

also binding the list of properties (Pl). Indeed, the properties URIs are used as

subject of a triple only in the intensional knowledge. The pseudo-code of the

intensional knowledge Extraction Algorithm is shown in the beginning of this

Section.

I have tested the algorithm on several datasets and it always stopped without

erroneously download any triples belonging to extensional knowledge. The num-

ber of iterations can give an estimation of the ontology deepness and complexity.

Usually, it stop after around 5 iterations and it reached a maximum of 22 iterations

for the most complex ontologies.

3.5 Test and Performance Evaluation

The IE component has been tested on the entire set of datasets taken from SPARQL

Endpoint Status6, a specialized application that recursively monitors the availabil-

ity of public SPARQL endpoints contained in DataHub. Table 3.2 reports the

number of datasets that were examined. Here, 469 endpoints have been tested,

but unfortunately only 244 were online when tests were performed (May 2014).

Moreover, during the connection test phase, I checked the compliance of each

endpoint with SPARQL 1.1 operators. For this reason the number of suitable end-

points decreased to 137. Since I use only a subsets of SPARQL 1.1 operators, the

IE process was successfully performed on 56% of the sources (137/244). At the

same time, the number of endpoints fully compatible with SPARQL 1.1 was much

6http://sparqles.okfn.org/
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lower; they were only 14, so the 5%7. Also the pattern strategy has demonstrated

its effectiveness by increasing the number of endpoints successfully indexed, from

33 to 107. On these datasets, I have also evaluated the behavior of the intensional

knowledge Extraction Algorithm that usually stops after 5 iterations and only in

few cases needs more iterations, till a maximum of 22 iterations.

In Table 3.3 statistics about the performance for the 107 datasets that have

completed the extraction are shown. The average time of extraction is 6.12 min-

utes (the avg size of each dataset is 32 millions of triples). Thus, I have examined

3.45 billions of triples in 11 hours using a single process. I also tested a multi pro-

cesses implementation of IE; by using 9 parallel processes the extraction time de-

creases to just 3.35 hours. This is an good result if compared to similar tools such

as SchemEx that was able to analyze 2.17 billion of triples in 15 hours[Kon+12].

Figure 3.3: Distribution of the extraction time (s) for the datasets for which the
Statistical Index was successfully extracted

Figure 3.3 reports the indexes extraction time of the 107 datasets that success-

fully completed the extraction. It can be seen that more than 90% of the datasets

7as reported in http://sparqles.okfn.org/interoperability on May 4th, 2014.
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Table 3.2: Numerical information on the evaluated sources

Dataset URLs 469
Reachable datasets 244
SPARQL 1.1 compatible 137
Extraction completed 107
Extraction without Pattern Strategy 33

Table 3.3: Performance of the IE process on 107 datasets

AVG time of extraction 6,12 minutes
Total time (single process) 11,15 hours
Total time (9 processes) 3,35 hours
Total triples 3,45 billions

Table 3.4: Statistical indexes statistics over three datasets on the left. Pearson
correlation between extraction time and other features on the right.

KEGG Pathway Dbnary DBLP in RDF P. correlation
Triples number 49.859.159 39.393.237 Error 0.72
Instance number 11633810 8217804 54939 0.56
Class number 32 42 6 0.44
Property number 161 171 25 0.50
Extraction Time 19 minutes 1,5 minutes Error 1
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Figure 3.4: Extraction time (s) and number of triples

have completed the extraction in less than 500 seconds8. The regression line be-

tween the execution time and the number of triples for these datasets is draw in

Figure 3.4.

The heterogeneity on the implementation of the SPARQL endpoints is one

of the most critical aspects and it also dramatically affects the performances of

IE. To highlight this issue, in the right part of Table 3.4, I have compared the

characteristics of three datasets: KEGG Pathway (knowledge on the molecular in-

teraction and reaction networks), Dbnary (wiktionary data for several languages)

and DBLP in RDF (L3S). In terms of size and complexity the first two datasets are

very similar, but the extraction time on the first dataset takes more than 10 times

compared to the second. DBLP is a borderline case; although it is less complex

than the first two datasets, the extraction process has not been completed.

I have also investigated which of the dataset features has the greater impact on

the extraction time by using the Pearson product-moment correlation coefficient.

The coefficient values are presented in the left part of Table 3.4. The number

8The tests ran on a portable machine (Operative System: Windows 7 - 64 bit, RAM: 6 GB,
number of processors: 1, number of cores: 2).
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of triples obtains the higher value of correlation. This proves that there is a high

degree of linear dependence between the extraction time and the size of the dataset

as previously demonstrated in Figure 3.4.

3.6 Conclusions And Future Work

Starting from the URL of a SPARQL endpoint, the IE component is able to au-

tomatically extract a set of statistical indexes describing the content of an RDF

graph. In this Chapter, I presented the architecture and the algorithms composing

the IE component and I proposed an evaluation over a significant number of LOD

sources available on the SPARQL Endpoint Status portal. The results obtained are

satisfactory both in terms of portability and performance.
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Chapter 4

Visual Querying LOD sources with
LODeX

4.1 Introduction

It has been eight years since Tim Berners-Lee designed the Linked Data Princi-

ples. Now the Web of Data consists of more than a thousand of datasets collecting

several billion of triples1. The LOD dataset generation is also encouraged by

the Open Access trends and its importance has been highlighted by the report2

produced by the Open Data Barometer of the 2014: "In 2014 the G20 largest in-

dustrial economies followed up by pledging to advance open data as a tool against

corruption, and the UN recognized the need for a Data Revolution to achieve

global development goals". Although, the LOD cloud is growing more and more,

navigation and visualization of Linked Data is still at the beginning.

Several portals, such as the well known Data Hub, catalog datasets that are

available as LOD on the Web and provide keywords search methods to identify a

dataset of interest. Usually, a user have to manually explore a new dataset using

SPARQL queries to understand if a dataset really contains the information that he

is looking for. It follows that a user with no SPARQL knowledge cannot become

1http://linkeddatacatalog.dws.informatik.uni-mannheim.de/
state/

2http://barometer.opendataresearch.org/report/summary/

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://barometer.opendataresearch.org/report/summary/
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a consumer of the data contained in the LOD Cloud. Even for a skilled user

this is not a easy task because there are no fixed modeling rules in designing the

structure a LOD dataset; usually, external classes and properties are used within a

dataset without formally define how they are related to the classes defined locally.

Moreover, a great number of datasets is published without a real documentation

that could help on revealing their structure.

In this Chapter I present LODeX a tool which is the direct implementation of

the Schema Summary model and it contains the Intdex Extractor module. LODeX

aims to solve the above issues in order to empower users without technical skills in

exploring, understanding and extracting knowledge from a LOD dataset without

any a-priori knowledge on the source itself. In particular, it provides: (1) an high

level Schema Summary able to capture structural information of a LOD source, to

enable classes and properties browsing; (2) a powerful and intuitive visual query

builder, to empower users in the in-dept exploration of the instances of the source

and eventually to generate a SPARQL query able to extract the piece of knowledge

to which the user is concerned. The tool takes advantage of a query refinement

panel and a SPARQL compiler that capture each change in the visual query and

refreshes of the corresponding SPARQL query and its result.

In this Chapter, I describe LODeX and I test the portability of the tool on more

than 300 datasets to demonstrate that my tool can be used with the great part of the

datasets belonging the LOD cloud. Moreover, I conducted a usability evaluation

in order to show the effectiveness of LODeX in representing the structure of a

dataset and in supporting the user in building queries on an unknown LOD source.

The results demonstrate the effectiveness of the tool and, further, highlight future

lines of development.

The remainder of the Chapter is structured as follows. I discuss related work in

Section 4.2. I draw the architecture and a motivation example in Section 4.3. Sec-

tion 4.4 illustrates a use case scenario, while Section 4.5 reports the evaluation on

portability and usability of the tool. Finally, Section 4.6 sketches the conclusion

and the future lines of extension for LODeX.
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4.2 Related Work

Several researchers have attempted to support users in LOD source visualization,

browsing and in the definition of complex queries allowing fancy visualization of

the results. Table 4.1 contains a comparison of different tools based on visualiza-

tion and querying features3.

As shown in the table, I can distinguish between two major groups: the tools

that focus on providing an overall overview of the whole structure of the datasets

and the tools that provide just an instance level view of the datasets and supply

query functionalities.

In the first group, we can find LOD Visualization and ProLOD; tools that aim

to provide to users an high level analysis of a LOD dataset. In particular, LOD Vi-

sualization is a prototype based on the Linked Data Visualization Model [BAG12],

and it allows to build analysis, transformations and visualizations of Linked Data.

ProLOD[Abe+14] automatically provides a group of statistical analysis regarding

the content of a dataset, but it does not foresee any querying possibility.

The second group of tools are able to provide visual querying functionalities

and advanced visualizations for the query results, but their focus is limited to the

instance level. LD Query Wizard[Höf+14] allows to visualize an instance selected

through keyword search and it uses a powerful tabular view that permit users to

explore the neighborhood of this instance. LODlive and LODmilla[KB14] pro-

vide a visually appealing way to explore information associated with an instance

using a graph visualization. Also, gFacet[HZL08; HEZ10] uses the same strategy

of exploration (with a graph visualization), but in this case, each node is a class

that contains a list of instances and the user can link new nodes (classes) as if

he/she was building a visual query. SPARKLIS[Fer14] implements a fascinating

approach in which a SPARQL query is composed as if the user was composing

a natural language request to the dataset. ISPARQL[KBS07] allows to incremen-

tally build a SPARQL query by extending it step by step; the main issues of this

approach are that the user is required to have a good knowledge of the Semantic

3Among the variety of tools that handle Linked Data, I selected those able to connect to
SPARQL endpoints. The comparison reported in table 4.1 is not intended to be exhaustive.
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Web technologies and to understand the schema of the LOD source for defining a

SPARQL query that retrieve interesting information.

As reported in [DR11], the majority of the tools for data visualization requires

the user to manually explore the dataset and they are not able to provide a syn-

thetic schema of the data contained in a single source. LODeX differs from the

tools described above since it provides a synthetic representation of LOD source

schema and the user can use it to build visual queries. However, LODeX has

some limitations: it is not able to perform keyword queries, moreover there are

large areas of improvement in the result visualization of the query.

4.3 Architectural Overview

LODeX consists of four distinct components, each responsible for a specific activ-

ity, named: (1) Indexes Extraction, (2) Schema Summary Generation, (3) Schema

Summary Visualization, (4) Query Orchestration.

The components interact in order to: produce a visual Schema Summary (i.e.

a high-level representation of the LOD source); provide it to the users; translate

the visual query that a user might compose in a SPARQL query and to retrieve

the results. The interaction is illustrated in Figure 4.1. For an easy reuse, all the

contents extracted and processed are stored in MongoDB, a NoSQL document

database (since it allows a flexible representation of the indexes).

4.3.1 Indexes Extraction

In a RDF graph the RDFS/OWL triples used to define a vocabulary or an ontol-

ogy describe the intensional knowledge,while the instances and their datatype and

object properties compose the extensional knowledge. In Figure 4.2 an exam-

ple of the RDF graph representing a LOD source is displayed. The intensional

knowledge is conveyed in the triples shown on the top of the figure, while, on the

bottom, we have triples that describe three instances and compose the extensional

knowledge.
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Figure 4.1: LODeX Architecture

The extraction process takes as input the URL of a SPARQL endpoint and

generates a set of queries able to extract a set of indexes from the extensional

knowledge (extensional group of Statistical Indexes in [BBP14b], see Chapter 3).

These indexes are composed by sets of couple (c,p) where c is a class and p is a

property:

• SC (Subject Class) contains object properties p and their domain class c.

• SCl (Subject Class to literal) contains datatype properties p and their do-

main class c.

• OC (Object Class) contains object property p and their range class c.
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Figure 4.2: An example of the RDF Graph partitioning between intensional and
extensional knowledge.

Table 4.2 lists the indexes extracted from the extensional knowledge of the exam-

ple in Figure 4.2.

4.3.2 Schema Summary Generation

The Schema Summary (SS) of LOD source is created by exploiting information

contained in the indexes described in the previous Section. The number of in-

stances of each class and the number of times an index appear in a dataset are

exploited in order to discover how the classes are connected in the extensional

knowledge; thus, the SS is the schema of a dataset inferred from the distribution

of the its instances (major details about the Schema Summary and the Schema

Summary generation algorithm can be found in the Chapter 2).

In Figure 4.3 a representation of the SS of the previous example (shown in Fig-

ure 4.2) is depicted. The white circles represents classes (C), while the attributes

(A) are shown in the gray boxes. Finally, the edges describe the properties (P).

Each element is equipped with a numerical value representing the number of oc-

currences/number of instances.
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Name Values

Classes
{ ex:Sector, foaf:Person,

foaf:Organization}

SC
{(foaf:Organization,ex:ceo),

(foaf:Organization,ex:sector) }

SCl

{ (foaf:Person,foaf:firstName),
(foaf:Person,foaf:lastName),

(foaf:Organization,ex:dbpedia:fax),
(ex:Sector,dc:title),

(foaf:Organization,ex:activity),
(foaf:Organization,dbpedia:fax) }

OC { (ex:Sector,ex:sector) }

Table 4.2: Classes and indexes extracted from the extensional knowledge of the
source depicted in Figure 4.2

Figure 4.3: The SS of the LOD source represented in Figure 4.2.

In this context the usage of a model like the Schema Summary brings several

advantages: the SS can be easily be stored and retrieved from MongoDB, storing

the SS in a triplestore would have involved well known performance issues that

would lead to worsening the performance of LODeX; the SS can be directly vi-

sualized in the GUI of LODeX and it makes possible the visual query building

feature.

4.3.3 Schema Summary Visualization

The visualization is performed by a web application through which the user can

interact for browsing the SS. The web server is implemented in Python, while
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Figure 4.4: An example of a visual query created on the Schema Summary
shown in Figure 4.3 and its translation in SPARQL.

the user interface uses different Javascript libraries to produce an interactive web

application. In particular, I used Polymer to manage the GUI, a new library that

allow to design applications according to the Material Design principles by using

Web Components4. I used Data Driven Documents5[BOH11] to create the inter-

active Schema Summary, and Sgvizler6[Skj] to allow the querying of the remote

endpoints and to display the results. The visualization of the Schema Summary

has been also presented in the demo [BBP14a].

4.3.4 Query Orchestration

The Query Orchestrator manages the interaction between the GUI and the user in

composing the visual query, in the generation of the SPARQL queries and in the

submission of it to the remote endpoint.

4http://www.w3.org/standards/techs/components
5http://d3js.org/
6http://dev.data2000.no/sgvizler/

http://www.w3.org/standards/techs/components
http://d3js.org/
http://dev.data2000.no/sgvizler/
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The classes, properties and attributes selected by the user in the visual query

participate to the composition of a basic query Q. A basic query has a tree structure

that overlaps the SS graph, the nodes of the tree are classes ∈ C, while the leafs

can be both classes ∈ C or attributes ∈ A. Here is its formal definition:

Definition 7 (Basic query) A basic query Q, defined on a schema summary S, is

a tuple Q= (T,mC ,mE ,mA,o,F), where

• T is a directed and labeled tree composed by two kinds of vertices, T =

(C’,A’,E’), where:

– C’ is a set of vertices where each vertex refers to a class in the Schema

Summary

– A’ is a set of vertices where each vertex refers to an attribute in the

Schema Summary. This kind of node can appear only as leaf of the

tree T

– E’ is a set of edges where each edge consist of an ordered pair of

vertices e=<n1,n2>, e ∈ E’, n1 ∈ C’, n2 ∈ C’ ∪ A’

– r ∈ C’ is the root node,

• mC : C
′ → C is a mapping function that links each vertex in C’ with a

vertex in C(S);

• mA : A
′ → A is a mapping function that links each vertex in A’ with an

edge in A(S);

• mE : E ′ → P is a mapping function that links each edge in E’ with an edge

in P(S);

• o : E ′ ∪ A′ → {true, false} is called optionality function.

• F contains the filtering conditions associated with the attributes of the query

and it is composed by a set of tuple (a,k,v), where a is the attribute ∈ A’, k

contains the filtering operator (a regular expression, or an arithmetic oper-

ator) and v is the value through which to assess the filter expression.
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Graphically, a user starts composing a basic query by selecting the first class

in the SS, then, if the user selects a property for this first class, also the connected

class is shown in the query panel and the edge and vertex are added to the tree.

The user may also select the attributes of each class: in this case, the tree is further

enriched with edges and leafs.

The Query Orchestrator translates the basic query into a SPARQL query

through a compiler. The compiler exploits an iterative algorithm that traverses

the basic query tree to produce the SPARQL query. The Query Orchestrator is

able to compile non cyclic SPARQL query of any length; it allows the use of these

SPARQL operators: AND (.), OPTIONAL (also nested), FILTER, ORDER BY,

OFFSET and LIMIT. The pseudo-code of the query compiler is presented in Al-

gorithm 3. For simplicity, I show only the compilation of the core of the query,

then, this core will be equipped with the SELECT statement, the pagination con-

dition (LIMIT and OFFSET) and the ORDER condition, if specified. Algorithm

1 uses as input the Schema Summary S, the basic query Q and the set of filter

conditions F defined in the refinement panel. F contains triples like (n, k, v),

where n is an attribute on which the filter is applied, k is an operator and v is a

numerical value or a string. The output (SQ) of Algorithm 3 contains a SPARQL

query. I use some of the algebraic operators defined in [PAG09b] to describe the

formulation of the query: the triple pattern (s,p,o), in which the elements can also

be parameters (in this case we use the function Par for assigning a unique param-

eter); the operator AND that represents the dot (.) in SPARQL; the operator OPT

(OPTIONAL); the operator FILTER (i.e. ?parameter condition value). Moreover,

I use the term attribute to refer to an edge that connects a vertex that is a class, and

a vertex that is a base type and the term property to refer to an edge that connects

two vertices that are classes.

The example introduced in Figure 4.4 shows a simple query built on the

Schema Summary of Figure 4.3. This query has been composed by selecting the

class foaf:Organization, its attribute ex:activity and the property ex:sector. The

selection of this property automatically results in the selection of the object class

ex:Sector, then, I also add the attribute dc:title. From this graphical query, the
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Data: S, Q, F
Result: SQ

1 Algorithm compiler()
2 SQ=(Par(r),rdf:type,mC(r));
3 SQ=attributes(r,SQ);
4 SQ=recursivebody(r,SQ);
66 return SQ;
7 Function recursivebody(c,RQ)
8 forall the child ch of c do
9 CHQ=(Par(ch),rdf:type,mC(ch)) AND

(Par(c),mP (<c,ch>),Par(ch));
10 CHQ=attributes(ch,CHQ);
11 if ch is not a leaf node then recursivebody(ch,CHQ);
12 if o(ch) then RQ=RQ OPT ( CHQ );
13 else RQ=RQ AND CHQ;
14 end
1616 return RQ ;
17 Function attributes(c,SQ)
18 forall the attribute a connected with c do
19 AQ=(Par(c),mA(<c,a>),Par(a));
20 if exist F(a) then AQ=AQ AND filtCon (a);
21 if o(a) then SQ=SQ OPT ( AQ );
22 else SQ=SQ AND AQ;
23 end
2525 return SQ ;
26 Function filtCon(a)
27 FC=∅;
28 forall the fc in F related to a do
29 concatenate in FC, using the AND operator, each fc condition as:

FILTER (Par(a), fc.k fc.v);
30 end
3232 return FC ;

Algorithm 3: SPARQL compiler algorithm
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Query Orchestrator module generates the SPARQL query shown in the bottom

part of the Figure 4.4.

4.4 A Use Case Scenario

Here, I refer to a hypothetical use-case involving a company in the clean energy

sector. The company has its own products and services and attempts to discover

new information on renewable energy in the country where it is located. It is very

likely that looking on portals like Datahub, the company detects the “Linked Clean

Energy Data” dataset7. This dataset, composed of 60140 triples, is described as

a “Comprehensive set of linked clean energy data”. By using LODeX, the struc-

ture of the dataset is revealed and it can be easily browsed (see Figure 4.5)8. At

a glance, the user can have the intuition of all the main classes (the nodes in

the graph) and the connections among them (the arcs), besides the number of in-

stances defined for each class (reflected in the dimension of the node). Focusing

on the color of the nodes, a user can understand which classes are defined by the

provider of the source and which others are taken from external vocabularies (in

this case I can see that some of the class definitions are acquired from Foaf, Geon-

ames.org and Skos) using the legend (Fig 4.5 Sect A). By positioning the mouse

on a node, more information about the class is shown.

As depicted in Figure 4.5 (Sect B), the source collects 1869 organizations and

each organization is described by some attributes (Sect D) together with the aver-

age number of times each attribute is used by an instance of the class, for example

not all the instances have a zip code (0.88), whereas all of them have more than

one name (1.60). Moreover, a class is linked to others by some properties (Sect

C). By navigating the schema, a user might also discover that each organization is

link to roughly 3 sectors, but then each sector (36 sectors in total) is linked to 151

organizations.

The user has to select a root node to start building a visual query (”Organi-

7http://data.reegle.info/
8The visual summary of this source is also available at http://dbgroup.unimo.it/

lodexCleanEnergy

http://data.reegle.info/
http://dbgroup.unimo.it/lodexCleanEnergy
http://dbgroup.unimo.it/lodexCleanEnergy
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Figure 4.5: An example of visual query on the “Linked Clean Green Energy
Data” source

Figure 4.6: An example of the translation of the visual query of Figure 4.5 into
the corresponding SPARQL query.
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zation" in Figure 4.5). Now the user can add some attributes to the current class

by clicking the buttons on the left of the attributes name (M: mandatory, O: op-

tional). In Figure 4.5 the user select 3 optional attributes (”name", ”abbreviation"

and ”street") for the class ”Organization". The user can also add other classes

linked to the current class through a specific property by clicking the button on

the left of a property in the property panel (Sect C). In Figure 4.5 the user added

2 mandatory classes/properties (”activeIn" ”Feature" and ”sector" "Sector"). The

user can look at the visual query that he is building (Fig. 4.5 Sect E) and use it in

order to focus on the different components of the query and add other attributes

or properties/classes. At this point, the user can generate the query clicking the

”Generate" button which brings the user in the query refinement panel (Figure

4.6).

In the refinement panel (Fig. 4.6) the user can visualize the SPARQL query

(F) that has been generated and he may manually modify it. He can also choose

to visualize directly the result of the query by selecting the result tab or enable

the automatic compiler (E) and modify the query by using the interface on the top

(A,B,C,D) visualizing the results that change according to his refinement. After

any change the query is compiled and automatically sent to the endpoint. In par-

ticular, the user can: (A) add or remove filter condition on the attributes contained

in the query; (B) modify the optionality of attributes/classes or remove one of

them from the query; (C) remove the pagination of the results, or modify the page

size; (D) insert or remove ordering condition.

4.5 Evaluation

I propose three kinds of evaluations regarding LODeX: first, I analyze the

portability of the LODeX approach; then, I evaluate the level of expressiveness of

the SPARQL queries that can be generated by LODeX; finally, I provide the result

of a usability evaluation performed with anonymous users. A deep evaluation of

the performance of IE process can be found in [BBP14b] and in Chapter 3.
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Figure 4.7: Distribution of the micro-tasks execution time grouped for graph size.

4.5.1 Portability to SPARQL endpoints

LODeX has been designed to be a tool able to work with each dataset provided of a

SPARQL endpoint. Thus, I use the complete list of SPARQL endpoints contained

in DataHub as test set.

Table 4.3 reports the number of datasets that were examined; 302 datasets

were online when I performed the test. The IE process use a subset of SPARQL

operator to extract the indexes, so, just 206 datasets were compatible. Another

well known issue is the bad performance of some SPARQL endpoint, for this

reason the number of endpoint for which I was able to generate the SS decrease

to 185, that remains a good result because I obtained a SS from the 61% of the

reachable endpoints.

Now, I am going to extend this portability evaluation to the GUI of LODeX for

inspecting two aspects: success/failure of the communication with the endpoints;

clarity of the graph representation of the SS9.

9the results of report can be consulted online at http://dbgroup.unimo.it/

http://dbgroup.unimo.it/detasetsLodexPortability.html
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Test Nov 2014
Reachable datasets 302

SPARQL 1.1 compatible 206
Extraction completed 185

Table 4.3: Number of Dataset used perform the portability evaluation

I executed preliminary usability test in my laboratory using 5 students to find

out how many the size of the graph affects its clarity. I asked the students to

individuate a specific node in graphs of different size (20, 30, 50, 80 and 100

nodes) and I measured the time taken for each task. I provided to students 25

tasks each (5 tasks for each graph size). The results are shown in the Figure 4.7,

as you can see the finding time increases almost linearly when the dimension of

the graph is less than 80 nodes. For this reason, I decided to not consider the

datasets having more than 80 nodes. The number of these datasets is 40 and they

represent the 21% of the total. Possible solutions to this issue will be discussed in

as future work in Section 4.6.

Out of the remaining 145 endpoints, 7 were not online when the test was

performed, 28 returned to the user interface a non-standard response. The LODeX

web application makes an AJAX request to the endpoint containing the query

and requiring a response encoded through JSONP (JSON with padding). This

kind of communication technique is used in Javascript to overcome the same-

origin policy, commonly used to avoid cross-site scripting (XSS) attacks. Since

some endpoints (28 in my case) were not able to encode a JSONP response, they

replied with a non-standard response. Finally, 110 endpoints, almost the 60% of

the total10, successfully pass the test.

4.5.2 SPARQL expressiveness

To evaluate the level of expressiveness of the queries generated I inspected how

many of the queries composing the BSBM benchmark[bizer2008benchmarking]

detasetsLodexPortability.html
10You can browse these datasets using the demo of LODeX available at: http://dbgroup.

unimo.it/lodex2

http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/detasetsLodexPortability.html
http://dbgroup.unimo.it/lodex2
http://dbgroup.unimo.it/lodex2
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(Berlin SPARQL Benchmark) could be generated using LODeX. These set of

queries is formed by queries usually used to explore a new dataset. LODeX would

be able to generate 6 of 10 queries proposed by the benchmark, a good result tak-

ing in consideration that a user without any knowledge of SPARQL could be able

to generate them with LODeX. The four excluded queries contain SPARQL oper-

ator not supported by my tool: UNION, CONSTRUCT and DESCRIBE. LODeX

is able to generate all the queries involving any type of JOIN and FILTER op-

eration except for the cyclic queries. Indeed, the SPARQL compiler is able to

automatically translate a basic query, the structure of which is a tree.

4.5.3 Usability Evaluation

This section summarizes the results of an evaluation performed as an online sur-

vey11 compiled by anonymous users. Among the users involved, 22 were enrolled

from IT communities and others 5 were bachelor students. I divided the survey

in two distinct parts: the first aims to verify if the graph visualization of the SS

is clear in representing the structure of a dataset; the second part intends to prove

if the visual query panel is a powerful and adequate way for generating SPARQL

queries. The survey collects the results of a sparse set of users aged between 23

and 43 years (Fig. 4.8) with different Semantic Web technologies skills (as shown

in Figure 4.9). This is an ideal scenario to prove the effectiveness of the tool

on users with different background knowledge.I used 3 different datasets in the

survey: (D1) Bio2RDF - INOH - pathway database of model organisms12; (D2)

Linked Open Aalto Data Service - Open data published by Aalto University13;

(D3) Nobel Prizes - Linked Open Data about every Nobel Prize14.

11The survey can be compiled at this url:http://goo.gl/forms/FRSRWKLSq4
12http://datahub.io/dataset/bio2rdf-inoh
13http://datahub.io/dataset/linked-open-aalto-data-service
14http://datahub.io/dataset/nobelprizes

http://goo.gl/forms/FRSRWKLSq4
http://datahub.io/dataset/bio2rdf-inoh
http://datahub.io/dataset/linked-open-aalto-data-service
http://datahub.io/dataset/nobelprizes
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Figure 4.8: Age distribution.

Figure 4.9: Semantic Web skill distribution.
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Methodology

The survey encloses a short tutorial containing a description of the SS and a short

video where the functionalities of query generation are explained15. Each of the

two parts is composed by micro-tasks designed to evaluate the effectiveness of

LODeX in addressing its two main goals.

Schema Summary Browsing Functionality - I propose two anonymous SS gen-

erated from two datasets (D1 and D2). The tasks that I asked the users to perform

are listed in Table 4.4 (T1 to T4).

T1: Find out the topic of each dataset D1,D2

T2:
Find out the class with the largest number of
instances D1,D2

T3:
Find out the classes connected to a given class
chosen by us D2

T4:
Find out the most used attribute of a class
chosen by us D2

Q1:
Return all the different category of Nobel
prizes D3

Q2:

Return a table containing the list of winners
of a Nobel prizes ordered by the name of the
winner; the table has to contain the date of
birth of the winner.

D3

Q3:
Find the award files related to the award
of Peter W. Higgs D3

Q4:
Find the organizations that won a Nobel
prize after the 1999 D3

Table 4.4: Tasks and queries used in the LODeX evaluation and the
corresponding datasets.

Query Generation Functionality - I asked to users to generate 4 different

queries from natural language requests (the requests are listed in Table 4.4 from

Q1 to Q4).

Finally, I asked to compile a SUS[Bro96] questionnaire and reply to a usability

questionnaire. In particular, I asked to score, on a scale of 1-5, the following sen-

15The tutorial is accessible at http://dbgroup.unimo.it/LODeXGuide.html

http://dbgroup.unimo.it/LODeXGuide.html
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tences: “I found the Schema Summary was easy to browse””; It permits to have

an overview about the structure of a Dataset”; “The visualization of the Schema

Summary is clear”. For the second part, I asked questions regarding the SPARQL

query generation feature and the overall tool: "How do you evaluate your knowl-

edge about SPARQL?"; "If you have already written SPARQL queries, how do

you find using LODeX compared to manually writing SPARQL queries?"; "Any

comments? What was good / bad / unexpected / difficult?".

SELECT ? Pe r s on ?name ?Award ? AwardFi le ? l a b e l

WHERE {

? P e r s on a < h t t p : / / xmlns . com / f o a f / 0 . 1 / Person > .

? P e r so n < h t t p : / / xmlns . com / f o a f / 0 . 1 / name> ?name .

?Award a < h t t p : / / d b p e d i a . o rg / o n t o l o g y / Award> .

?Award < h t t p : / / d a t a . n o b e l p r i z e . o rg / t e r m s / l a u r e a t e > ? Pe r s on .

? AwardFi le a < h t t p : / / d a t a . n o b e l p r i z e . o rg / t e r m s / AwardFi le > .

? AwardFi le < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? l a b e l .

?Award < h t t p : / / d a t a . n o b e l p r i z e . o rg / t e r m s / a w a r d F i l e > ? AwardFi le .

FILTER ( s t r ( ? name ) = " P e t e r W. Higgs " ) .

}

Listing 4.1: Query generated answering to Q3

Quantitative evaluation

I evaluate the correctness of the answers provided by users for the tasks listed in

Table 4.4.

Schema Summary Browsing Functionality - The tasks belonging to this section

obtain an accuracy of the 91% (Table 4.5). I asked to complete these tasks without

querying the dataset, but just browsing the Schema Summary, so I obtained a high

accuracy. The students that completed the survey in my laboratory were able to

complete these task in less than 5 minute in average.

Query Generation Functionality - These group of tasks obtained an overall

accuracy of 90%. This is a very good result because the last 3 queries are quite

complex; in fact, they involve 2 or more classes with a filter or an order condition

(see the correct query generated for the request Q3 is listed in Listing 4.1) . The

students that completed the survey in my laboratory were able to complete these
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Task Number n Correct % Correct
T1 54 48 89%
T2 54 48 89%
T3 27 23 89%
T4 27 27 100%
Total 162 148 91%

Table 4.5: Results of the tasks listed in Table 4.4

Task Number n Correct % Correct
Q1 27 27 100%
Q2 27 26 96%
Q3 27 22 81%
Q4 27 23 85%
Total 108 98 90%

Table 4.6: Results of the queries listed in Table 4.4

task in less than 15 minute in average. This is a very promising result, in fact, all

the students enrolled had a very low knowledge of SPARQL.

Qualitative evaluation

I evaluate the SUS score obtained and the answers to the qualitative question pro-

posed.

Schema Summary Browsing Functionality - In Figure 4.13 you can have an

overview of the SUS score obtained by the 27 users, the results are clustered ac-

cording to the knowledge of the user of the Semantic Web technologies. The SUS

overall median value is 85 and, according to [BKM09], I can classify this func-

tionality to Excellent. The median values obtained distinguishing among skilled

and unskilled user are rather similar (82.5 vs 87.5), so I can assume that this func-

tionality has been appreciated by both kind of users. Moreover, I also request to

rank the level of agreement to three sentences regarding the SS:

• “I found that the Schema Summary was easy to browse” (see results in

Figure 4.10).



4.5 Evaluation 69

• “It (SS) permits to have an overview about the structure of a dataset” (see

results in Figure 4.11).

• “The visualization of the Schema Summary is clear” (see results in Figure

4.12).

Practically, most users think that: it is easy to browse; it can work as docu-

mentation of a dataset; its visualization is clear.

Query generation functionality - This functionality uses all the features of the

tool, so I can assume that the SUS scores obtained in this step represent the global

SUS score of LODeX. Therefore, the distribution of the SUS score obtained for

LODeX is shown in Figure 4.14 and I obtained a median SUS score of 82.5 that

classifies LODeX as Excellent, always according to [BKM09]. Also in this case,

I do not find particular differences among the median value of the score among

skilled and unskilled users (82.5 vs 85). The fact that, both skilled and unskilled

users equally appreciated LODeX, according to the SUS scores, demonstrates that

the final user can be unaware to Semantic Web technologies to explore and query

LOD sources with LODeX. That was one of the main goal of LODeX in order

to increase the usage of LOD sources. Users who did not know SPARQL were

able to query a dataset LOD for the first time; an user answers to this question,

"If you have already written SPARQL queries, how do you find using LODeX 2.0

compared to manually writing SPARQL queries?", like this: "Just written my first

SPARQL queries using LODeX. Nice". On the other hand, one skilled user an-

swers to the question above in this way: "LODeX is cognitively less demanding".

I received also some criticisms concerning some aspects of the GUI (e.g. browser

rendering differences) that will be very useful for improving LODeX. Another

criticism regards the graph visualization of the SS that can became complex for

huge dataset and starting a query can be difficult for a user.
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Figure 4.10: Distribution of agreement rate of users to the sentence: “I found that
the Schema Summary was easy to browse”.

Figure 4.11: Distribution of agreement rate of users to the sentence: “It (SS)
permits to have an overview about the structure of a dataset”.

Figure 4.12: Distribution of agreement rate of users to the sentence: “The
visualization of the Schema Summary is clear”.
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Figure 4.13: Distribution of SUS score for the Schema Summary browsing.

Figure 4.14: Distribution of SUS score for the query generation functionality.
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4.6 Conclusion & Future Works

In this Chapter, I presented LODeX, a tool for visual exploration and querying of

LOD sources. LODeX unveils the intrinsic structure of a LOD source by provid-

ing a summarized view of the dataset and allow users to visually compose/refine

a query addressed to this source.

LODeX has proven to be an effective tool in facilitating users’ interaction with

LOD sources. Moreover, writing SPARQL queries can be a time-consuming and

boring task also for experts, thus, navigating the inferred schema of a dataset and

selecting classes and attributes of interest can strongly simplify the formulation of

a query, making more pleasant the consumption of Linked Data. Portability tests

showed that LODeX is able to process 61% of the accessible SPARQL endpoints

and to render 59% of the LOD sources.The survey, conducted on 27 users, has

revealed a good level of usability with a SUS classification as “Excellent”. A

complete demo of the tool has been also presented in the demo [BBP15a]

However, some limitations arise from the evaluation of the tool. First of all

the graph visualization of the SS can become messy for huge dataset. This might

affects the portability of LODeX, therefore I are currently studying different so-

lutions to solve this drawback: for example to apply clustering techniques and

group together some sets of nodes with similar characteristics or limit the number

of nodes visualized to the neighborhood of the node that is the current focus of

the user. The first solution allows to visualize the structure of the whole dataset,

but the query building functionality might be affected. With the second option, I

do not affect the query building, but I lose the possibility to represent the whole

dataset. Moreover, the use of keyword search techniques could significantly im-

prove the selection of elements of a visual query.



Chapter 5

Clustered Schema Summary

5.1 Introduction

The RDF Data Model plays a key role in the birth and continuous expansion of the

Web of data since it allows to represent structured and semi-structured data. How-

ever, while the LOD cloud is still growing, we assist to a lack of techniques able

to produce a meaningful, high level representation of these datasets. In Chapter 2

I presented a model, called Schema Summary, able to represent the structure of a

generic LOD dataset; In this Chapter, I contribute to the LOD summarization pro-

cess by defining a clustering procedure to further shrink the representative schema,

crucial especially for portray huge datasets. The Schema Summary (SS) and the

Clustered Schema Summary (CSS) enable summarization at different granular-

ities. The SS conveys the implicit structure of the LOD dataset, by displaying

the main classes and the properties used among them. While, the CSS provide a

further “contraction” of the SS by gathering together classes which concur in the

instantiation of same instances and computing the central class that best identi-

fies each group. In this Chapter I will also evaluate both SS and CSS respect to

ontology summarization metrics.

The remainder of this paper is organized as follows. Section 5.2 discusses

related work. The model and the generation algorithms are presented in Sec-

tion 5.3.1. Here, I formally define the Clustered Schema Summary and I present
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the generation algorithms able to generate an RDFS light-weight ontology that

conveys the information of the SS/CSS. The evaluation of my methodology is re-

ported in section 5.4. This section consists of some statistics on the datasets used

for the tests, the definition of the employed evaluation measures of coverage and

compression. Conclusions are sketched in Section 5.5.

5.2 Related Work

Several techniques of schema summarization has been applied in the last few years

to different data models with the purpose of increase the usability and the com-

prehension of the dataset where they are applied. With the rise of publications

of LOD, and Semantic Web in general, a lot of effort has been spent in applying

these technique to increase the usability of RDF data.

The most important group of techniques that can be applied to LOD sources

are collected under the name of Ontology Summarization. In this group, we can

find a lot of works ([PMd08], [LMd10] [ZCQ07] [Wu+08]) that usually produce

as output a ranked list of the most important concepts identified in the ontology.

The main drawbacks of these techniques are: their summaries do not represent

the structure of the source; they were applied to small OWL ontology containing

just intensional content. Differently from these ontologies, the datasets belonging

to the LOD cloud have a more heterogeneous content. Recently, in [Zha+09] and

[Che+12], summarization techniques have been applied on vocabularies coming

from the LOD cloud. The main limitation of these works is that they always

rely on a schema available in RDFS format, while several datasets, lacking of

intensional knowledge, remain excluded. The main difference of my method is

that the summary produced takes into account the extensional content, so it can

be applied on every dataset belonging to the LOD cloud.

My technique can also be compared to more general techniques working on

RDF data in which a summary, or a set of descriptors, are extracted from a

LOD source. In [CPF13], authors divide these techniques in two groups, triples-

level and instances-level summaries, according to the granularity with which the
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sources are scanned and indexed.

The triples-level techniques inspect the content of the RDF dataset scanning

each triple, and then usually build an index containing statistical information re-

garding the type of these triples. SchemEx [Kon+12] is an example of work be-

longing to this group; here, dumps of RDF graphs are indexed to support user

query processing. Differently from my approach, this work does not consider the

connection among instances, thus it is only able to give a complete characteriza-

tion of classes belonging to an RDF graph.

In the instance-level approach the RDF graph is inspected taking into account

RDF, RDFS and OWL primitives and their semantics, in order to detect structural

information pervasive in the source. We can find two important works [Har+10]

[PKK12] where the instance-level summary can support efficient and federated

query evaluation. My technique can also be positioned in this group because

the sources are inspected looking for the existing connection among instances of

classes to infer the underlay structure of a dataset, but the main purpose is to build

a summary describing the structure of the source.

5.3 Model definition

In this Section, I present the formal definition of the Clustered Schema Summary.

This definition is based on the Schema Summary definition that can be found in

Chapter 2, Section 2.3.

5.3.1 Clustered Schema Summary

The Clustered Schema Summary leverages multiple class instantiation which is a

structural feature common to a lot RDF graphs. Multiple class instantiation (i.e.

the declaration of instances as members of more than one class) is a common

practice in knowledge bases, since it could offer a modeling solution for most sit-

uation were an instance may be consider as being member of two or more classes.

An arbitrary number of rdf:type properties can be associated with a resource, so,

a node of the RDF graph can be, at the same time, instance of more than a class. I
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call a set of classes that concur in the multiple instantiation of the same resource

i ∈ (U ∪ B) partial cluster of classes (PC(i)). Each PC(i) ⊆ C (C is the set of

classes used in the RDF graph (RG)).

Definition 8 PC(i) = {c|<i,rdf:type,c>∈ RG ∧ i ∈ (U ∪B)}

By examining all the instances in a RG graph, we can find different PC. The

collection of all the PC that occur in a RG graph is called family of PC (C):

Definition 9 C = {PC(i) : ∀i ∈ (B ∪ U)}

In C is contained a particular family of sets able to generate all the other sets.

I call this family, family of super sets S, and I define it as follow:

Definition 10 S = {SS ∈ C : @PC ∈ C ∧ PC ⊃ SS}

I defined an algorithm able to extract S starting from C. This algorithm ex-

tracts S in an efficient way by taking advantage of its definition (Definition 10).

The pseudo-code of the algorithm is presented below.

Data: C
Result: S
S = ∅;
while C ̸= ∅ do

c = set of max length ∈ C;
add c to S;
C = C - powerset (c);

end
Algorithm 4: Super sets extraction algorithm

For each set ss ∈ S, a class ca ∈ ss must be elected to represent the en-

tire set of classes. This class is called candidate agent of the superset S. For

each superset, I choose as candidate agent the class with the highest number of

instances.

The set of all the candidate agents is called CA. The function ca : CA →
S assigns to each candidate agent the corresponding super set. Now that some
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classes have been grouped together, I can produce a new Schema Summary with a

reduced number of classes, that I called Clustered Schema Summary (CSS). The

formal definition of the CSS is given in the following.

Definition 11 (Clustered Schema Summary) A Clustered Schema Summary

CS for a RDF dataset, derived from the Schema Summary S = <Cs, P, s, o, A,

m, Σl, l, count>, is a pseudograph: CS = <Cs’, P, s, o, A, m, Σl, l, count, S, ca>,

where

• P, s, o, A, m,Σl, l, count are the same elements defined in the Schema Sum-

mary S;

• Cs’ contains the classes represented in the CSS, Cs′ = Cs−{sc|sc ∈ SC :

∀SC ∈ S}+ CA

• S is the family of superset;

• ca : CA→ S is the candidate agent assignment function.

5.3.2 RDFS light-weight ontology generation

I deem that a good summarization algorithm may produce an output that is com-

patible and comparable with the input. For this reason, I provide an algorithm able

to translate the SS/CSS in an RDFS ontology[BG04] that embodies the structure

of the RDF dataset.

This translation is not completely lossless; by using the RDFS primitives only,

it is not possible to exhibit all the information contained in the SS/CSS. In partic-

ular, I lose the number of occurrences of attributes, properties and instances (the

function count(e)). However, an RDFS ontology describing the structure of the

RDF Graph can be very useful and it can be portable to other applications.

The translation algorithm (see Algorithm 5) uses 4 primitives taken from the

RDFS standard to generate the ontology: rdfs:Class used to define the classes;

rdfs:range, rdfs:domain, rdfs:Literal used to define the properties and the at-

tributes of the SS/CSS.
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Figure 5.1: Representation using LODeX of the SS generated from the
“Reference data for linked UK government” dataset.

Figure 5.2: Representation using LODeX of the CSS generated from the
“Reference data for linked UK government” dataset.
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Data: S
Result: RDFS(RDFS graph)
RDFS = ∅;
forall the p ∈ S.p do

RDFS.add(<S.l(S.s(p)),rdf:type,rdfs:Class>);
RDFS.add(<S.l(S.t(p)),rdf:type,rdfs:Class>);
RDFS.add(<S.l(p),rdfs:domain,S.l(S.s(p))>);
RDFS.add(<S.l(p),rdfs:range,S.l(S.t(p))>);

end
forall the a ∈ S.a do

RDFS.add(<S.l(a),rdfs:domain,S.l(S.m(a))>);
RDFS.add(<S.l(a),rdfs:range,rdfs:Literal>);

end
Algorithm 5: RDFS ontology generation algorithm.

5.3.3 Example

Here, I introduce an example showing the SS and CSS built on the refer-

ence.data.gov.uk1 dataset, i.e. a source that contains reference data for linked UK

government data. The RDF dataset is composed by 59.447 triples, 9.482 instances

and 50 classes. I visualize the SS2 (see Figure 5.1) and the CSS3 (see Figure 5.2)

visualized through LODeX. I also provide the RDFS ontology generated from the

SS4 and the CSS5. The SS is composed by 44 nodes while the CSS is composed

by 20 nodes of which 4 are candidate classes that represent a super set of classes.

In this example the CSS contains less than the 50% of the SS nodes. Table 5.1 lists

the clusters that have been automatically generated; it is possible to see that the

class selected as candidate agent, in each cluster, correctly represents the whole

set of classes. This is even more evident in the last two clusters, where the can-

didate agents (CivilServicePost and Department) represent a generalization of the

classes contained in the set.

1http://datahub.io/dataset/reference-data-gov-uk
2Please use Chrome to access to this url: http://dbgroup.unimo.it/lodex2/

testCluster#!/schemaSummary/328.
3Please use Chrome to access to this url: http://dbgroup.unimo.it/lodex2/

testCluster#!/cSchemaSummary/328
4http://dbgroup.unimo.it/lodex_328.rdf
5http://dbgroup.unimo.it/lodex_328c.rdf

http://datahub.io/dataset/reference-data-gov-uk
http://dbgroup.unimo.it/lodex2/testCluster#!/schemaSummary/328
http://dbgroup.unimo.it/lodex2/testCluster#!/schemaSummary/328
http://dbgroup.unimo.it/lodex2/testCluster#!/cSchemaSummary/328
http://dbgroup.unimo.it/lodex2/testCluster#!/cSchemaSummary/328
http://dbgroup.unimo.it/lodex_328.rdf
http://dbgroup.unimo.it/lodex_328c.rdf


80 Clustered Schema Summary

Table 5.1: Clusters of classes in the “Reference data for linked UK government”
dataset (uk.gov stands for http://reference.data.gov.uk/def/)

http://purl.org/net/opmv/ns#Process
http://purl.org/net/opmv/types/google-refine#Process

http://rdfs.org/ns/void#Dataset
http://purl.org/linked-data/cube#DataSet

http://purl.org/net/opmv/ns#Artifact
uk.gov:reference/URIset
uk.gov:reference/uriSet

http://www.w3.org/2004/02/skos/core#ConceptScheme
http://xmlns.com/foaf/0.1/Document

uk.gov:central-government/CivilServicePost
uk.gov:central-government/AssistantParliamentaryCounsel

uk.gov:central-government/DeputyDirector
uk.gov:central-government/DeputyParliamentaryCounsel

uk.gov:central-government/Director
uk.gov:central-government/DirectorGeneral

uk.gov:central-government/ParliamentaryCounsel
uk.gov:central-government/PermanentSecretary

uk.gov:central-government/SeniorAssistantParliamentaryCounsel
http://reference.data.gov.uk/id/public-body/national-gallery/grade/1

uk.gov:central-government/Department
uk.gov:central-government/MinisterialDepartment

uk.gov:central-government/NonMinisterialDepartment
uk.gov:central-government/PublicBody

uk.gov:public-body/Department
http://www.w3.org/ns/org#Organization
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5.4 Evaluation

The evaluation of ontology summarization techniques is a quite controversial topic

in literature. In fact, these techniques are usually designed to summarize an on-

tology with a purpose, so their evaluation is focused on the achievement of this

goal. Nevertheless, Li and Motta in [LM10] tried to provide a systematic view of

the different evaluation measures.

I chose two of the metrics prosed in [LM10] to estimate the quality of the

summarized ontology I built: corpus coverage ontology evaluation, that score the

ontology appropriateness to cover the topic of the corpus, and application-driven

ontology evaluation, that measure the performance of an application that uses the

summary.

In the following, after a brief description of the datasets used, I delineate the

two metrics.

5.4.1 Datasets

The datasets used to evaluate my methodology are taken from DataHub6. For

the SPARQL endpoint listed in DataHub, I make use of the Index Extraction

module[BBP] of LODeX[BBP15b] to extract the patterns needed to generate the

SS/CSS and the corresponding RDFS ontologies.

Table 5.2: Statistics on the tests performed on the LOD datasets listed on
DataHub.

Test Value
LOD datasets 599

Reachable datasets 302
SPARQL 1.1 compatible datasets 206

SS generated 185
CSS generated 90

Table 5.2 contains information about the test set. My method has been proven

to work correctly with almost all the RDF graphs that I can index. Since the

6http://datahub.io/

http://datahub.io/
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patterns are extracted through SPARQL queries, this process greatly suffers on

the bad performances of the endpoints, thus the tests performed on February 2015

revealed that only 185 out of 302 datasets can be indexed (major details of this

issue can be found in [BBP]). I was able to built the SS on 185 datasets and the

CSS on 90 datasets that contain clusters of classes 7.

5.4.2 Corpus coverage ontology evaluation

The concept of corpus coverage ontology evaluation has been solely defined in

[LM10], but, to the best of my knowledge, do not exist cases in the ontology

summarization field in which this kind of evaluation has been used. That is pri-

marily due to the fact that in this field most efforts have been carried out into rank-

ing and selecting key terms from a vocabulary as a summary [Che+12][LMd10]

[PMd08][Wu+08][ZLQ06].

The SS supplies a synthetic representation of the extensional knowledge, so

that we can think to the concept of coverage as: what percentage of the instances

in the source RDF graph (corpus) are represented though the SS/CSS. Moreover,

the SS can be translated into an RDFS ontology. In that way, both the source and

the output are expressed using the same language (RDF) and I can compare their

sizes defining a compression metric.

Coverage

To evaluate the coverage of SS and CSS statistical information stored in them

are crucial. Indeed, I can know how many time a particular pattern appears in

the source graph. The number of triples that are represented though the SS/CSS,

nrepr, is approximatively computed by summing the number of occurrences of

each property, each attribute and the number of class instances that appear in the

SS/CSS. The ratio of nrepr to the total number of triples of the RDF graph, ntot,

give us the coverage:

7A demo of the SS and CSS extracted is available here (please use Chrome) :http://
dbgroup.unimo.it/lodex2/testCluster

http://dbgroup.unimo.it/lodex2/testCluster
http://dbgroup.unimo.it/lodex2/testCluster
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Figure 5.3: SS coverage distribution

coverage = nrepr/ntot

In Figure 5.3, it is shown the distribution of the coverage for 140 SS (see Table

5.2)8. I obtained an high coverage, with an average value of 80%. An exception

is given for 9 datasets that obtain a coverage under the 60%. By examining these

cases, I discovered that these datasets describe an ontology in which the inten-

sional knowledge is predominant.

Figure 5.4 reports the coverage distribution for the CSS; this time the number

of datasets is 74 (see Table 5.2)9. Here, the average value of coverage is 54%.

Given that, by using the CSS, I are not able to represent some instances of clus-

tered classes, this was a predictable result.

Compression

The compression gives us the information about how much the SS shrinks the di-

mension of the original source. I choose to use the space saving measure. I extract

8The number of datasets is decreased, since some SPARQL endpoints does not supply the
number of triples.

9The number of datasets is decreased, since some SPARQL endpoints does not supply the
number of triples.
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Figure 5.4: CSS coverage distribution

the number of triples in the original source that define the intensional knowledge

of the source it self, i.e. the number of RDFS/OWL triples, ninten. On the other

hand, I calculate the number of triples of the RDFS ontology that represents the

SS, nRDFS . The space saving can be calculated as:

SpaceSaving = 1− (nRDFS/ninten)

The results of this analysis are provided in Figure 5.5. As you can see, I reach

a space saving value of than 99% for more than the 90% of the datasets.

5.4.3 Application-driven ontology evaluation

This kind of evaluation, according to [LM10], leads to the definition of a “clean"

environment where no other factors but the ontology influences the performances

of the application [Sab+06]. My technique is directly bound to LODeX[BBP15b]

which is a tool used to yield an interactive view of a SS and it aims to represent

the structure of the dataset acting as a documentation of the dataset. Therefore, an

evaluation of LODeX is greatly suited for this scope, indeed, LODeX is the tool

built upon the Schema Summary model. I deeply described the tool in Chapter 4,
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Figure 5.5: Space saving distribution.

where I provided a deep evaluation containing also a usability evaluation executed

through an online survey in which LODeX obtained, as a summary result, a me-

dian SUS score of 82.5 that classifies LODeX as Excellent, according to [BKM09]

(for major details see Section 4.5.3).

5.5 Conclusion

In this Chapter, I proposed the definition of a compress version of the Schema

Summary, called Clustered Schema Summary. The SS exposes all the main

classes and properties used within the datasets, either they are taken from exter-

nal vocabularies or not. The CSS provides a more high level view of the classes

and the properties used, it exploits multiple class instantiations to generate clus-

ters of classes and decrease the overall size of the graph. Both SS and CSS are

conceivable, and can be converted, as RDFS ontologies.

In this Chapter, I evaluated both the summaries according to ontology summa-

rization metrics. Both SS and CSS obtained an high coverage of the LOD source

on which they are applied. Moreover, the SS has proved to be a good compression

method, since it reaches a compression of 99%.The LODeX application, that ex-
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ploits the SS to supply users with a navigable interface, has demonstrated to be a

powerful tool for both experts and unskilled user interested in the comprehension

of a LOD source.
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Chapter 6

Context Semantic Analysis

6.1 Introduction

Recent years have seen growing number of knowledge bases that have been

used in several domains and applications. Besides DBpedia [Aue+07], which

is the heart of the Linked Open Data cloud [BL06], other important examples

includes: Wikidata [VK14], a collaborative knowledge base which is replacing

Freebase [Bol+08]; YAGO [SKW07], a huge semantic knowledge base, derived

from Wikipedia, WordNet [Mil95] and GeoNames [Wic11]; Snomed CT [BD06],

the best known ontology in the medical domain; and AGROVOC[Car+13], a mul-

tilingual agricultural thesaurus used recently for annotating some agricultural re-

sources like CEREALAB[Ben+15]. The range of applications where these knowl-

edge bases are used is heterogeneous; indeed, they provide a reliable source of

knowledge that can be used for improving existing techniques, as NLP[Fri+01]

or Information Retrieval[Fer+11], where has been shown that this knowledge en-

riched approaches can bring remarkable improvements.

In the context of documents pairwise similarity the most effective techniques

are based on Vector Space Models of Semantics [TP+10]; the documents, com-

posed by words, are represented in a vector space having words as dimensions.

The way in which the components of each vector, i.e. the terms, are weighted

can vary according to different strategies (term frequency, inverse document fre-
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quency, entropy and so on) and techniques of dimensionality reduction can be

applied to automatically detect synonymy between words (LSA [Dum04]), and

thus, improve the performance of the similarity estimation. Even if these ap-

proaches have proven their effectiveness in simulating human judgment [LPW05],

they only rely on the textual information contained in the documents and they do

not leverage external sources of knowledge. Consequently, they fail in detecting

weak relation between concepts like in these two sentences: "The band leaded

by Mick Jagger will be playing in London next week" and "The Rolling Stones

will open the concerts’ season in Trafalgar Square". These two sentences contain

highly related concepts and these relations can be easily found in a knowledge

base like DBpedia, even if they are not contained explicitly in the text.

Usually, contextual information is deliberately omitted by an author of an ar-

ticle because it belongs to the common knowledge of the reader. Thus, a ma-

chine cannot find contextual information within a document, but it should leverage

knowledge bases representing the machine-processable version of the common

human knowledge. In this Chapter, I present a novel technique, called CSA (i.e.

Context Semantic Analysis), for estimating pairwise similarity between document

leveraging the information contained in a knowledge base. CSA is composed by

several steps: starting from entities spotted in a document I extract a contextual

graph; from this contextual graph I generate a context vector representing the doc-

ument’s context; I propose different weighting strategies of the context vectors

by applying techniques of network analysis on the contextual graph (PageRank

and Personalized PageRank) and techniques of matrix dimensionality reduction

(SVD[MS07]); finally, I use these context vector for estimating the context simi-

larity. I evaluate CSA by using the LP50 dataset [LPW05], a dataset composed by

a small set of documents, where repeated similarity measures provided by humans

are collected.

The following Chapter is structured as follow. Section 6.2 contains the Re-

lated Works, while Section 6.3 contains preliminaries useful for introduce the rest

of Chapter. Then, CSA is described in Section 6.4 and Section 6.5 contains its

evaluation respect to human judgments. Finally, the last Section contains some
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conclusion.

6.2 Related Work

Semantic similarity has been one the main research topic of the last few

years[ZGC13]. This is due to wide range of application where it can be ap-

plied: Word Sense Disambiguation [PBP03], information retrieval [EMG11],

multi-document summarization [Nas08] or for building domain specific recom-

mendation systems [BP14][BPS14]. A lot of works on semantic similarity fo-

cused on computing semantic similarity between words and just recently efforts

have been spent on the broader task of text similarity [BZG11][Agi+13]. In gen-

eral, the most effective group of techniques are supervised methods that use large

features sets [Bär+12] [Šar+12], however, these kind of approaches can difficultly

be used in context where does not exist labeled data. Differently, the technique

presented in this Chapter represents an unsupervised methods that not required

any labeled data or parameter tuning for working.

CSA is, to the best of my knowledge, the first work that make use of a knowl-

edge base for encoding the contexts of documents in a vector space and then use

the context extracted for estimating inter documents similarity. My work can be

linked to research works in Information Retrieval that make use of controlled vo-

cabulary in domain specific contexts [Lan72] [BMS15]. In general, CSA can

be seen as an example of an advanced Knowledge Organization System (KOS)

[LZ08], because it make use of a knowledge base for representing the context of

a document. Nevertheless, I do not generate an ad-hoc vocabulary but I make use

of existing knowledge graphs containing general purpose knowledge.

6.3 Preliminaries

In this Section, I will introduce some concepts used later on in this Chapter.
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6.3.1 Inter-Document similarity

The state of the art techniques for estimating inter-document similarity are pri-

marily based on vector space models. A document is represented through a vector

and the similarity between two documents is calculated as distance between two

respective vectors.

Let C be a corpus composed of n documents, where di is the ith document.

Each document di is composed by a sequence of terms. Let m be the number of

distinct terms in C, I can represent each document di using the standard bag-of-

words vector space representation:

d⃗i = [ti1, ..., tim]

where til is the weight assigned to the term l in the document i. Now, I can

define the matrix T as a matrix n × m formed by the n vectors di as rows. The

weight of each elements of the matrix T is assigned by local and global weight-

ing functions for making the cells content a better approximation of the corpus

content. Thus, I define the wight of a generic cell as:

tji = L(i, j)×G(i)

where L(j, i) is the local weight of the term i within document j and G(i)

is the global weight of the term i across all documents in the corpus[NPM01].

Different strategies of weighting exist; in the following I present three of the most

widely used.

Bag of words : It is the simplest way of producing a vector representation of

documents and it uses only a local weight function, thus, G(i) = 1. The local

weight L(i, j) is equal to the number of time the term i appears in the document

j.

Term Frequency - Inverse Document Frequency : This is the most famous

kind of document vectorization strategy and it is based on term frequency as local

weight function and inverse document frequency as global one. The term fre-

quency formula is defined as follow:
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Definition 12 tf(i, j) =
c(i, j)

I∑
k=1

c(k, j)

where tf(i, j) is the term frequency of the term i in the document j, c(i, j) is

the number of times the term j appears in the document j and I is the total number

of terms in the corpus.

The inverse document frequency weight is defined as follow:

Definition 13 idf(i) = 1 + log2

(
J

df(i)

)
where idf(i) is the inverse document frequency of the term i, J is the number

of documents in the corpus and df(i) is the number of documents containing the

term i.

Entropy : This kind of document vectorization uses as local weight the term

frequency (see Definition 12) and the entropy as global weight. The entropy global

weight is defined as follow:

Definition 14 en(i) = 1 +

J∑
k=1

(p(i, k) log2 p(i, k))

log2 J

where p(i, j) is a conditional probability for the term i and the document j. It

is calculated as tf(i,j)
gf(i)

where gf(i) is the total number of times term i occurs in the

whole collection.

Latent Semantic Analysis - LSA assumes there is a latent semantic structure

in the documents it analyzes and its goal is to extract this latent semantic structure

that is normally obscured by noise or variability in word usage. In order discover

this structure, a single value decomposition (SVD) is applied to the matrix n×m

T (the matrix representing the corpus of documents), where n is the number of

documents and m is the number of terms. SVD implies selecting a dimensionality

d ≤ m for the subspace representation, and finding the n× d orthonormal matrix

U , the d×d diagonal matrix D and the m×d orthonormal matrix V that minimize
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the squared difference ||T − UDV T ||. The resulting n × d matrix L is a least

squares best fit to T obtained by zeroing all but the largest d coefficient of D.

The most common way of estimating the similarity of two documents is the

cosine similarity and it is defined as follow:

Definition 15 skj =

∑
i liklij

(
∑

i l
2
ik

∑
i l

2
ij)

1
2

where lk and lj are the k × 1 reduced rank vectors representing the k-th and

j-th document.

6.3.2 PageRank and Personalized PageRank

The PageRank[Pag+99] is a famous method for ranking Web pages according to

their structural importance within the graph they form (the edges are the hyper-

links). The main concept is that every time an hyper-link from pi to pj exists,

i grants importance to j, thus, the rank of j increases. Moreover, the strength

of this grant depends on the importance of i. Alternatively, PageRank can also

be interpreted as the result of a random walk process, also called random surfer

model; in this case, the final rank of a page i represents the probability of a random

walk of being on the page i after an high number of iterations.

Let G be a graph with n vertices (v1, ..., vn), di be the outdegree of the node i

and M be a n× n transition probability matrix defined as follow:

Definition 16 Mij =

{
1
di

if ∃ edge from i to j

0 if @ edge from i to j

Then, the PageRank vector R over the graph G can be calculated by resolving

the following equation.

R = cMR + (1− c)v

In the equation, c is the dumping factor, a scalar value between 0 and 1 and v

is a n× 1 vector in which each element is 1
n

. The first component of the equation
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simulates the behavior of the random surfer while the second part is needed to en-

sure that the random surfer does not remain trapped in some portion of the graph

without outgoing edge. Indeed, it represents the probability of a surfer randomly

jumping to another node of the graph. Moreover, it makes any graph fulfill the

property of being aperiodic and irreducible and it ensures that the PageRank cal-

culation converges to a unique stationary distribution. The most common values

assigned to the dumping factor is between 0.85 to 0.95.

In the classic PageRank configuration the vector v is a stochastic normalized

vector where all the values are 1
n

, so the random surfer has an equal probability to

be teleported in any of the nodes of the graph G. In 2002 Personalized PageRank,

also called Topic Sensitive PageRank, was introduced in [Hav02]. The difference

is that the vector v can be non-uniform, thus, I can assign stronger probabilities

to particular nodes and consequently, I can bias the computation of the rank R

to be more influenced from those nodes. An extreme setting could be to concen-

trate all the probability mass to a single node i, in that case all random jumps

would teleport the random surfer in i and, as a results, all the rank scores will be

concentrated in i and in its neighbors nodes.

6.4 CSA

Context Semantic Analysis is performed on a corpus C of documents leverag-

ing the content of a knowledge base KB. The technique is composed of three

different steps:

• Subgraph extraction: a contextual subgraph cgd containing the contextual

information of the document d is extracted.

• Context Vectors generation: a context vector c⃗vd representing the context

of the document is generated analyzing its contextual subgraph.

• Context Similarity: the Context Similarity is evaluated by comparing the

context vectors of documents belonging to the corpus C.
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6.4.1 Contextual Graph

The goal of this first step is to extract from a knowledge base KG, starting from

a document d, a contextual graph cgd containing all the contextual information

that I can find in KG. A knowledge base is an RDF dataset containing general

or domain specific information. Each RDF graph is composed by a set vertices V

and a set of labeled edges E. The vertices can be divided in 3 disjoint sets: URIs

U , blank nodes B and literals L. Two vertices connected by an edge represent a

statement. Each statement is stored into a <subject,predicate,object> triple. I can

define the whole RDF graph and consequently a knowledge base KG, according

to [CWL14], as a set of triples.

Definition 17 KG ⊆ (U ∪B)× E × V

A subgraph cgd is a particular subset of triples contained in KG. In partic-

ular, I utilize contextual graphs composed only of entities as vertices and object

properties as edges. It follows that a conceptual graph is composed only of triples

belonging to extensional knowledge. This choice is due to the willing of lever-

aging the implicit structure of a contextual graph for finding the most important

entities representing the context of a document. A datatype property always leads

to an isolated vertex (a literal), thus, it does not enrich a contextual graph with any

useful information.

Contextual Graph Extraction

Before extracting the contextual graph of a document d, I have to identify the

concepts belonging to KG which are explicitly mentioned in the document. I call

this set of entities starting entities (SE). Named Entity Recognition[NS07] tech-

niques allow to spot Linked Data entities within a text; I use API for finding the

starting entities because the implementation of a novel technique of Named Entity

Extraction is out of scope of this work. In particular, I use Dandelion API[Par+14]

because I empirically noticed that this API returns good quality starting entities.

I extract a contextual graph starting from the set of starting entities of a docu-

ment. In particular, the subgraph is composed by all the triples that connect with
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a path of length l at least 2 starting entities in KB.

Definition 18 cgd = {< s, p, o > | < s, p, o >∈ KG∧ < s, p, o >∈
Path(s1, s2) ∧ length(Path(s1, s2)) ≤ l ∧ s1 ∈ SE ∧ s2 ∈ SE ∧ s1 ̸= s2}

Path(s1, s2) means that a path connecting the two entities s1 and s2 exists in

KG.

For each couple of starting entities, according to l, I generate a set of SPARQL

queries able to extract the triples belonging to any possible paths connecting those

2 entities. In Figure 6.1 you can see all the possible paths connecting two entities

s1 and s2.

Figure 6.1: Existing paths of length l = 2 between s1 and s2.

I introduced also some heuristics for improving the quality of contextual

graphs:

• Filter all the the possible cycles that can match some paths (with l > 2, as

it is shown in Figure 6.2).

• Filter all the triples belonging to the intensional knowledge.

Example - Taking as example the two sentences used in the introduction, "The

band leaded by Mick Jagger will be playing in London next week" and "The
Rolling Stones will open the concerts’ season in Trafalgar Square", I can easy

find two starting entities in DBpedia for each sentence: Mick Jagger and London
for the first one; The Rolling Stones and Trafalgar Square for the last one. The

relative contextual graphs with l = 3 are composed of 141 nodes for the first

sentence and 4 for the second one.
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Figure 6.2: Example of cycle that would include erroneously the node e in a
contextual graph.

6.4.2 Context Vectors

In this section I present different strategies of context vector weighting given a

contextual graph cgd. Let the corpus C = {d1, ..., dn} be a set of documents and

E = {e1, ..., em} the set of distinct entities occurring in the contextual graphs of

the documents belonging to C. The context of a document is then represented as

a m-dimensional vector c⃗vj . Let s(dj, ei) be a generic weighting function of the

entity ei ∈ E in the document dj ∈ C. Then, I can define a vector representation

of the context of the document dj as follow:

Definition 19 c⃗vj = (s(dj, e1), ..., s(dj, em))

Thus, the context of the whole corpus of documents C can now be represented

through a matrix n × m N , where each row j contains the context vector of the

jth document.

Weighting functions

A weighting function in this context have to spread weight to entities of a generic

contextual graph according to the importance of these entities within the graph.

Thus, PageRank is a natural choice because the main goal of this algorithm is to

rank graph nodes according their importance (major details about the algorithms

can be found in Section 6.3.2). I also used the Personalized PageRank and I set up

the personalization vector giving an equal probability to the starting entities; so

let p⃗ be the personalization vector (p1, ..., pm), its values are assigned as follow:

Definition 20 pi =

{
1

|SE| if ei ∈ SE

0 if ei /∈ SE
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where |SE| is the number of starting entities (∈ SE).

I used both PageRank and Personalized PageRank with different configuration

of dumping factor as weight function; Table 6.1 shows the different configuration

used.

Name Dumping Factor
PageRank

Personalized
PageRank

r@50 pr@50 0.5
r@75 pr@75 0.75
r@85 pr@85 0.85
r@90 pr@90 0.90
r@95 pr@95 0.95

Table 6.1: PageRank and Personalized PageRank configurations

Example - In Table 6.2 are reported the context vectors extracted from DB-

pedia of the two sentences reported in the Introduction. In the first sentence, the

starting entities were London and Mick Jagger and the contextual graph was com-

posed of 141 nodes. In the second sentence the starting entities were The Rolling

Stones and Trafalgar Square; in this case, the contextual graph was composed of

just 4 nodes. As you can see, a lot of weight for both vectors is spread to the en-

tity London which is target of a lot of object properties in DBpedia. Usually, the

upper level concepts in a generic knowledge base are target of object properties

and, thus, importance flows in them using PageRank and Personalized PageRank.

Nevertheless, it is apparent that these two algorithms behave slightly differently,

indeed, the PageRank tends to arrange weight in all the context graph’s nodes,

due to the equal probability of the random surfer to be teleported in each of them,

while the Personalized PageRank focuses all the weight in the starting entities and

their neighbors.

6.4.3 Context Similarity

In this section, I present how estimating the inter-document similarity based on

contextual information and then I propose strategies for combining the context
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Entities Sentence 1 Sentence 1
pr@85 r@85 pr@85 r@85

London 0.405 0.635 0.356 0.471
The Rolling Stones 0.285 0.185 0.226 0.138
Greater London 0.235 0.105 - -
Mick Jagger 0.075 0.029 - -
Casino Boogie 0.000 0.002 - -
Sweet Virginia 0.000 0.002 - -
Torn and Frayed 0.000 0.002 - -
Exile on Main St. 0.000 0.003 - -
Watch That Man 0.000 0.002 - -
Aladdin Sane 0.000 0.003 - -
Time (David Bowie) 0.000 0.002 - -
Polydor Records - - 0.192 0.254
Trafalgar Square - - 0.226 0.138

Table 6.2: Context Vectors r@85 and pr@85 of the two example sentences

similarity with existing techniques of inter-document similarity based on text (a

deep explanation of the state of the art techniques used in this section is proposed

in Section 6.3.1).

From the previous step, I obtained a matrix N n×m, where each row contains

the context vector of one document. I use the cosine similarity (see Definition

15) for calculating the context similarity between two documents. In this case,

the cosine similarity of two documents will range from 0 to 1, since PageRank

and Personalized PageRank can not return negative ranks. The angle between two

context vectors can not be greater than 90◦.

Example - Now I have all the components for estimating the context similarity

of the two sentences used as example in the introduction and for which I showed

the context vectors in Table 6.2. As I said, in this example common techniques

of similarity based upon text are not effective, given that the two sentences do

not share any common words. Using CSA I obtain a similarity score of 0.78 by

using r@85 vectors and 0.61 by using pr@85. Even if this is just a toy example I

obtained a remarkable results where the classic techniques of document similarity

failed in detecting this latent similarity. In the next Section, will be proposed a
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deeper evaluation of the effectiveness of CSA.

Combining CSA with text vectorization methods

I also sift through different ways of combining CSA with existing text based tech-

niques for estimating the similarity between documents. In particular, I used sev-

eral well known techniques explained in Section 6.3.1; Table 6.3 contains all the

configurations used.

Table 6.3: Different kinds of text vectorization used

Name Weighting n. components
bg Bag of Words -

tf-idf tf-idf -
tf-idf#1000 tf-idf 1000
tf-idf#500 tf-idf 500
tf-idf#100 tf-idf 100
tf-idf#10 tf-idf 10

tf-e tf-entropy -
tf-e#1000 tf-entropy 1000
tf-e#500 tf-entropy 500
tf-e#100 tf-entropy 100
tf-e#10 tf-entropy 10

The main goal here is to defines ways of combining CSA with existing tech-

niques, insofar as they use different information for estimating the similarity: text

and information taken form a knowledge base. In particular, I defined three dif-

ferent strategies for combining CSA with the state of the art methods.

Alpha

The first method is the simplest one and it only combines the results of the

context and text based similarity; let sCSA(i, j) be the contextual similarity and

st(i, j) the result of the cosine similarity by using the classic methods between

two documents i and j, I combine the two values as follow:

s = (1− α)st(i, j) + αsCSA(i, j)
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where α is a weighting parameter utilized for combining the two similarity

measures. Given that both the similarities scores are obtained as result of cosine

similarity calculated on vectors that not contain negatives values, both sCSA(i, j)

and st(i, j) range from 0 to 1, so also s ranges from 0 to 1. In Table 6.4 all the

different values of α utilized are shown.

Table 6.4: Different values of α used

Name α value
alpha 0.05 0.05
alpha 0.1 0.1

alpha 0.15 0.15
alpha 0.25 0.25
alpha 0.5 0.5

alpha 0.75 0.75

Max

The second method merging is called Max and it is based on the intuition that

text based and context similarity mostly detect independent aspect of similarity,

indeed, contextual information are not explicitly contained within the text. Thus,

this method produces s(i, j) by selecting the maximum value between sCSA(i, j)

and st(i, j):

s = max(st(i, j), sCSA(i, j))

Join

Finally, let N be the n×m matrix containing the context vectors and T be the

n× t matrix containing the vectors weighted according to the text before applying

any technique of dimensionality reduction. These two matrices have the same

number of rows n so I can perform an horizontal concatenation creating a new

matrix J of dimension n× (t+m) :

J = [M,N ]

The matrix J contains information about both text and context and I can cal-



6.5 Evaluation - Correlation with human judges 103

culate the similarity between two document always using the cosine similarity.

Moreover, I can apply SVD to J for trying detect some correlation, non only

between the term, but also between terms and entities.

6.5 Evaluation - Correlation with human judges

The most common and effective way for evaluating techniques of inter-document

similarity is to calculate the correlation between the results computed and the sim-

ilarity expressed by humans. Unfortunately, only a dataset of documents with this

characteristics exists and this is primarily due to huge effort needed for creating

such a dataset. The name of this dataset is LP501[LPW05] and it contains 50 docu-

ments, selected from the Australian Broadcasting Corporations news mail service,

evaluated by 83 University of Adelaide students (29 males and 54 females), with

a mean age of 19.7 years. The most effective way for comparing a novel tech-

nique with human judges is to calculate the Pearson product-moment correlation

coefficient[LL89] on the similarity results; the Pearson correlation measures the

linear correlation between two variables, in my case, the similarities expressed by

human judges and the ones computed. I conducted experiments using all the tech-

niques explained in Section 6.3.1 and a summary of the results is shown in Table

6.5. As you can see, the technique that performs better is the tf-idf. The use of

dimensionality reduction does not bring any improve in this experiment and this

is due to the restricted number of documents involved in the experiment that does

not allow to detect latent semantics in the vectorized corpus.

In this Section, two kinds of evaluation are proposed. First of all, the correla-

tion between the different ranking strategies and the human judges will be eval-

uated. Secondly, the evaluation is focused in finding the best way of combining

CSA with the classical methods of text vectorization.



104 Context Semantic Analysis

Table 6.5: Pearson correlation of the results obtained with different weighting
techniques respect to the similarity measure obtained from human judges (LP50

Dataset).

Name Correlation p-value
bg 0.19 2.2e-10

tf-idf 0.51 6.98e-67
tf-idf#1000 0.51 6.98e-67
tf-idf#500 0.51 6.98e-67
tf-idf#100 0.51 6.98e-67
tf-idf#10 0.33 5.99e-27

tf-e 0.43 5.46e-46
tf-e#1000 0.43 5.46e-46
tf-e#500 0.43 5.46e-46
tf-e#100 0.43 5.46e-46
tf-e#10 0.27 3.35e-18

Figure 6.3: Person correlation with human judgments (LP50 Dataset) of different
configuration of rankings and dimensionality reduction.



6.5 Evaluation - Correlation with human judges 105

6.5.1 CSA all alone

In this Section, the different techniques of rankings described in Section 6.4.2 will

be taken in exam for evaluating the effectiveness of CSA respect to human judges

by using the LP50 Dataset. I used Dandelion API[Par+14] for spotting entities

within the documents and then I extracted for contextual graphs by setting the

path length to, 2 following a large body of evidence from previous related work

[Hul+13] [NP12].

The different configurations tested are listed in Table 6.1 and the results are

shown in Figure 6.3. As you can see, the Personalized PageRank outperforms the

classical PageRank; the main reason is that Personalized PageRank spreads rank

in the neighborhood of the starting entities and for that reason is more suitable in

producing vectors that represent better the context of a document. Surprisingly,

two configurations of CSA works slightly better than the best configuration of tf-

idf (in Figure 6.3 the tf-idf score is displayed as a dotted blue line). Moreover, it

is quite obvious that applying dimensionality reduction to the matrix containing

context vectors does not bring any improvement, but this is certainly due to the

low number of documents involved in the experiment and I can not draw any

conclusion.

6.5.2 Merging methods

In this Section, different kind of evaluations aiming to discover the best way of

merging CSA with classical methods of text vectorization are proposed by using

the LP50 dataset as benchmark. The classical methods used in these experiments

are listed in Table 6.5, I used all the ranking configuration of CSA shown in Table

6.1 and all the merging strategies described in Section 6.4.3.

Given the large number of possible configurations, I perform an exploratory

analysis which is summarized in the box plot in Figure 6.4. The goal of this Fig-

ure is to have a glimpse of the percentage of improvement distribution varying

the kind of merging and the size of dimensionality reduction applied to the CSA

1https://webfiles.uci.edu/mdlee/LeePincombeWelsh.zip

https://webfiles.uci.edu/mdlee/LeePincombeWelsh.zip
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Figure 6.4: Box plot showing the percentage of improvement distributions
varying merging method and SVD configuration.

matrix. It is obvious that the most stable techniques of merging are: alpha merg-

ing with low values of α (less than 0.25); join merging with no dimensionality

reduction or with dimensionality reduction in a number of dimensions greater or

equal than 50.

Going more in detail, the distribution of the Pearson correlation scores ob-

tained by merging CSA with tf-idf and td-e is shown in Figure 6.5; it is evident

that tf-idf works better respect to human judges than tf-e. Therefore, the following

analysis will include only results involving the merging between CSA and tf-idf.

A detailed view of the different merging configuration performance, varying

CSA ranking, is shown in Figure 6.6. As you can see, the Personalized PageRank
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Figure 6.5: Comparison of the distributions of the Pearson correlation scores
obtained by merging different configurations of CSA with tf-e and tf-idf.

always outperform the classic PageRank and the best performances are obtained

by with α very low where has been applied a strong dimensionality reduction to

the CSA matrix. In order to further inspect this behavior I produced heat maps

of similarity matrices; a similarity matrix is a square matrix of dimension n × n,

where n is number of documents in the corpus and each cell of index (i, j) con-

tains the measure of similarity among the document i and j. These heat maps are

shown in Figure 6.7. The similarity matrix of human judges is shown in Figure

6.7a, while the similarity matrix computed through the tf-idf is shown in Figure

6.7b. The differences induced by SVD for pr@50 is visualized in Figure 6.7c and

6.7d; as you can see, the dimensionality reduction causes the range of values com-

posing the similarity matrix to be less equally distributed, so, context overlapping

produces high values of similarity, thus, this behavior explains why a very low α

produces improvements with a strong dimensionality reduction. Finally, the best

configurations obtained are shown in Table 6.6. As it has been stated before, ap-

plying a strong dimensionality reduction combined with low values of α produces

the highest improvements (from 12.410% to 14.16%) but also the not reduced ver-

sion obtains good level of improvement (11.46%). The final choice relies on the

number of documents involved, indeed, the whole context matrix have to be built
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Figure 6.6: Person correlation with human judgments of the different ranking
strategies of CSA merged with tf-idf grouped for type of merging.

for utilizing SVD and each time new documents are added the reduction should

be recomputed. Otherwise, if I implement a system that uses plain context vectors

they could be easily computed and stored as document’s metadata and each time

a new document is added its context vector could computed independently.

6.6 Conclusion and Future Work

In this Chapter, I presented a novel technique, called CSA (Context Semantic

Analysis) for exploiting the content of a knowledge base for representing the con-

text of a set of documents in vectorized way and estimate the context similar-

ity between them. A context vector can be easily stored as metadata of a doc-

ument and used, when needed, for computing the context similarity with other

documents. CSA has been evaluated respect to human judges by using the LP50

Dataset, a reference benchmark in the context of inter-document similarity esti-

mation, and it obtained a Pearson correlation score greater than tf-idf, a reference

technique in the field. I also inspected different strategy for combining CSA with
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(a) human judges (b) tf-idf

(c) pr@50 (d) pr@50 svd 10

(e) pr@50 alpha 0.05 (f) pr@50 join

(g) pr@50 max

Figure 6.7: Heat maps of similarity matrices obtained with different techniques;
x and y contain the 50 document and for each cell is represented through a color

the similarity score.



110 Context Semantic Analysis

Table 6.6: Pearson correlation and percentage of improvement obtained by
merging different configuration of CSA with tf-idf.

Rank Merging Pearson Corr. % of improvement SVD
pr@95 alpha 0.05 0.594 14.160 svd 10
pr@50 alpha 0.05 0.593 14.040 svd 10
pr@85 alpha 0.05 0.592 13.890 svd 10
pr@50 alpha 0.1 0.590 13.540 svd 10
pr@95 alpha 0.1 0.586 12.980 svd 10
pr@85 alpha 0.1 0.583 12.490 svd 10
pr@90 alpha 0.05 0.582 12.410 svd 10
pr@75 alpha 0.25 0.576 11.460 no svd
pr@50 max 0.574 11.140 no svd
pr@85 alpha 0.25 0.574 11.110 no svd
pr@50 alpha 0.25 0.573 11.010 no svd
pr@90 alpha 0.25 0.571 10.700 no svd
pr@50 alpha 0.50 0.571 10.670 no svd
pr@50 alpha 0.15 0.568 10.250 svd 10
pr@75 alpha 0.50 0.568 10.180 no svd
r@75 alpha 0.05 0.567 10.120 svd 10

pr@95 alpha 0.25 0.567 10.040 no svd
pr@75 max 0.567 10.010 no svd
pr@85 alpha 0.15 0.566 9.830 no svd
pr@75 alpha 0.15 0.565 9.790 no svd
pr@90 alpha 0.15 0.565 9.710 no svd
r@90 alpha 0.05 0.564 9.630 svd 10

pr@95 alpha 0.15 0.563 9.440 no svd
pr@75 alpha 0.05 0.561 9.170 svd 10
pr@50 alpha 0.15 0.561 9.080 no svd
r@95 alpha 0.05 0.561 9.070 svd 10

pr@95 alpha 0.15 0.561 9.050 svd 10



inter-document similarity techniques based on text, like tf-idf, reaching good per-

centage of improvement (more than 14%).

Even if this results are promising, It is necessary to test CSA with other knowl-

edge bases to ensure that this technique is independent from the knowledge graph

used. I’m planning to perform further tests using WikiData and UMLS.
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