
0.692

ACM SIGMOD Programming Contest 2022

Task Overview

Jiarui Luo
luojr2019@mail.sustech.edu.cn

Renjie Liu
liurj2019@mail.sustech.edu.cn

Xinying Zheng
zhengxy2019@mail.sustech.edu.cn

Advisor: Professor Bo Tang, Professor Xiao Yan

DBGroup@SUSTech: https://dbgroup.sustech.edu.cn/

Solution Overview

Preprocessing

Result

Blocking

Use regular rules to extract key features, for example:

Feature Reugular Expression Value

Feature Bucketing

 Divide the input instances into buckets based on the

features of the products.

 For buckets of high confidence (e.g., instances in the

bucket have some critical features in common), generate

pairs in those buckets directly.

cpu_model [AaEe][0-9][\-][0-9]{4}

Sentence Encoding

Pair Filtering

 Remove duplicated pairs and filter out pairs based on

specific rules (e.g., key features like brand don't match).

 Sort the remaining pairs according to the Euclidean

distance between the embedding vectors of a pair.

 Output the pairs in the sorted order until reaching the

predetermined output size.

Feature Extraction

Feature Bucketing

Sentence Encoding

A8-5545

Neighbor Fetching Pair Filtering

Neighbor Fetching

 For each instance, we

f ind i ts top-k nearest

neighbors to match with

it and generate pairs.

 Since searching top-k

neighbors in a bucket is

t ime-consuming and

c o s t l y , w e b u i l d a n

HNSW index for each

bucket to accelerate the

search process [2].

Feature Extraction

Result:

Instance_id Feature 1 Feature 2 Feature 3 Feature 4

X

Y

Z

NULL

NULL

O
u

tp
u

t

Dataset Recall

X1

X2 0.323

Time

1671s

Preprocessing

Blocking

Figure 1: Solution framework

Preprocessing:

 For each instance, we extract key features from its descrip-

tion sentence.

 For each instance, we encode its description sentence to a

vector.

Blocking: Put instances with similar features into a bucket,

search neighbors for each instance in its bucket, and filter out

impossible instance pairs.

Model: Pre-trained BERT model, fine-tuned to make matching

instance pairs more similar than mismatching instance pairs [1]

Output: A 128-dimension vector for each instance

Forward: Corpus + Tokenizer + Pooling

Backward: Minibatch + Triplet Loss

Figure 2: HNSW index

References

[1]J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-

training of deep bidirectional transformers for language

understanding, in: J. Burstein, C. Doran, T. Solorio (Eds.),

NAACL-HLT 2019.

[2]Y. A. Malkov, D. A. Yashunin, Efficient and robust

approximate nearest neighbor search using hierarchical

navigable small world graphs, TPAMI, 2018.

SUSTech_DBGroup · Finalist

Triplet Loss Minimize L = max(d(a,p) - d(a,n) + margin, 0)

a: Anchor description sentence

p: Sentence having the same label as the anchor sentence

n: Sentence having a different label from the anchor sentence

margin: A positive hyperparameter

d: Euclidean distance

Task: Entity Blocking, a filter for Entity Resolution, aims to

filter out obvious non-matching pairs and obtain a much

smaller candidate set for the following matching step.

Input/Output: Inputs are instances of products from different

e-commerce websites and we are required to output a set of

instance pairs that may refer to the same real-world product.

Performance Metric: Recall (the percentage of true instance

pairs listed in our output) with a predetermined output size.

	poster.vsdx
	页-1

