ACM SIGMOD Programming Contest 2022
SUSTech_DBGroup - Finalist

Jiarui Luo Xinying Zheng Renijie Liu DBGrou P

luojr2019@mail.sustech.edu.cn zhengxy2019@mail.sustech.edu.cn liurj2019@mail.sustech.edu.cn
Advisor: Professor Bo Tang, Professor Xiao Yan
DBGroup@SUSTech: https://dbgroup.sustech.edu.cn/

Task: Entity Blocking, a filter for Entity Resolution, aims to
filter out obvious non-matching pairs and obtain a much
smaller candidate set for the following matching step.
Input/Output: Inputs are instances of products from different
e-commerce websites and we are required to output a set of
iInstance pairs that may refer to the same real-world product.
Performance Metric: Recall (the percentage of true instance
pairs listed in our output) with a predetermined output size.

Solution Overview

Triplet Loss Minimize L = max(d(a,p) - d(a,n) + margin, 0)
@ a. Anchor description sentence
e p: Sentence having the same label as the anchor sentence
e n: Sentence having a different label from the anchor sentence
e® margin: A positive hyperparameter
e d: Euclidean distance

Blocking

Feature Bucketing

® Divide the input instances into buckets based on the
features of the products.

® For buckets of high confidence (e.g., instances in the
bucket have some critical features in common), generate

pairs in those buckets directly.

Neighbor Fetching D)

® For each instance, we

find its top-k nearest ®

neighbors to match with

it and generate pairs. . — @

' ®Since searching top-k

neighbors in a bucket is el .

time-consuming and . .

costly, we build an @
Figure 1: Solution framework HNSW index for each @ .

Preprocessing: bucket to accelerate the *-e

® For each instance, we extract key features from its descrip-
tion sentence.

® For each instance, we encode its description sentence to a
vector.

Blocking: Put instances with similar features into a bucket,
search neighbors for each instance in its bucket, and filter out
Impossible instance pairs.

I
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I

Preprocessing l

I

I

= |

Feature Extraction |
® Use regular rules to extract key features, for example: |
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

search process [2]. Figure 2: HNSW index

Pair Filtering

® Remove duplicated pairs and filter out pairs based on
specific rules (e.g., key features like brand don't match).

® Sort the remaining pairs according to the Euclidean
distance between the embedding vectors of a pair.

® Output the pairs in the sorted order until reaching the
predetermined output size.

del AaEe][0-9][\-][0-9]{4 A8-5545
cpu_mode [AaEe][0-9][\-][0-9]{4} X1 0.692

X2 0.323

® Result: 1671s

Instance_id | Feature 1
X O NULL ‘

' ® A 4

z ‘ NULL [

Sentence Encoding

Model: Pre-trained BERT model, fine-tuned to make matching
instance pairs more similar than mismatching instance pairs [1]
Output: A 128-dimension vector for each instance

Forward: Corpus + Tokenizer + Pooling

Backward: Minibatch + Triplet Loss

[1]J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-
training of deep bidirectional transformers for language
understanding, in: J. Burstein, C. Doran, T. Solorio (Eds.),
NAACL-HLT 20109.

[2]Y. A. Malkov, D. A. Yashunin, Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs, TPAMI, 2018.

	poster.vsdx
	页-1

