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Solution Overview

Preprocessing

Result

Blocking

Use regular rules to extract key features, for example:

Feature Reugular Expression Value

Feature Bucketing

   Divide the input instances into buckets based on the 

features of the products.

   For buckets of high confidence (e.g., instances in the 

bucket have some critical features in common), generate 

pairs in those buckets directly.

cpu_model [AaEe][0-9][\- ][0-9]{4}

Sentence Encoding

Pair Filtering

   Remove duplicated pairs and filter out pairs based on 

specific rules (e.g., key features like brand don't match).

   Sort the remaining pairs according to the Euclidean 

distance between the embedding vectors of a pair.

   Output the pairs in the sorted order until reaching the 

predetermined output size.

Feature Extraction

Feature Bucketing

Sentence Encoding
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Neighbor Fetching Pair Filtering

Neighbor Fetching

   For each instance, we 

f ind i ts top-k nearest 

neighbors to match with 

it and generate pairs.

   Since searching top-k 

neighbors in a bucket is 

t ime-consuming and 

c o s t l y ,  w e  b u i l d  a n 

HNSW index for each 

bucket to accelerate the 

search process [2].

Feature Extraction

Result:
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Figure 1: Solution framework

Preprocessing:

   For each instance, we extract key features from its descrip-

tion sentence.

   For each instance, we encode its description sentence to a 

vector.

Blocking: Put instances with similar features into a bucket,  

search neighbors for each instance in its bucket, and filter out 

impossible instance pairs.

Model: Pre-trained BERT model, fine-tuned to make matching 

instance pairs more similar than mismatching instance pairs [1] 

Output: A 128-dimension vector for each instance

Forward: Corpus + Tokenizer + Pooling

Backward: Minibatch + Triplet Loss

Figure 2: HNSW index
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Triplet Loss Minimize L = max(d(a,p) - d(a,n) + margin, 0)

a: Anchor description sentence

p: Sentence having the same label as the anchor sentence

n: Sentence having a different label from the anchor sentence

margin: A positive hyperparameter

d: Euclidean distance

Task: Entity Blocking, a filter for Entity Resolution, aims to 

filter out obvious non-matching pairs and obtain a much 

smaller candidate set for the following matching step. 

Input/Output: Inputs are instances of products from different 

e-commerce websites and we are required to output a set of 

instance pairs that may refer to the same real-world product. 

Performance Metric: Recall (the percentage of true instance 

pairs listed in our output) with a predetermined output size.
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