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Abstract

In this paper we present TUCUXI, an intelligent
hunter agent that replaces traditional keywords-based
queries on the Web with a user-provided domain ontol-
0gy, where meanings to be searched are not ambigu-
ous. TUCUXI judges the relevance of the retrieved pages by
matching the domain ontology against a simplified, but se-
mantically rich, document representation (Map of Mean-
ings). The Map of Meanings extraction involves the Lexical
Chaining technique, from the Natural Language Process-
ing (NLP) research field.

1. Introduction

Query results from traditional search engines are of-
ten less of use because of the information overload (pages
and pages of links) and the semantic ambiguity of natu-
ral language. Current retrieval techniques are inadequate:
firstly, keyword-based queries do not capture the user’s
needs, since many terms can express the same concept (syn-
onymy) or a term can have several meanings (polysemy).
Secondly, to rapidly answer queries, many search engines
employ a bag-of-word representation of documents where
intended meanings and semantic relations between mean-
ings are completely lost. Thus, we think that the new gen-
eration of search tools should focus its efforts over three
main aspects: (a) an ontology-based expression of the user’s
needs, where the meanings and the concepts to be searched
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gram through the Sewasie project (IST-2001-34825) in the Seman-
tic Web Action Line. The SEWASIE consortium includes the Univer-
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are not ambiguous; (b) the ability to exploit semantics for
documents retrieval; (c¢) the introduction of software per-
sonal agents to carry out sophisticated tasks such as intelli-
gent strategies for Web exploration.

The SEWASIE project (SEmantic Web and Agents
in Integrated Economies) aims at outperforming cur-
rent search engines enabling users to easily find strategic
information via an intelligent and integrated access to a col-
lection of heterogeneous data sources. In order to provide
such an access, current Semantic Web[6] approaches rely on
the a-priori existence of (generic) ontologies to enrich in-
formation sources with meaningful machine-processable
metadata. Instead, the SEWASIE’s component called
MOMIS OntologyBuilder creates a more accurate concep-
tualization of the domain of interest (domain ontology)
starting from sources to be integrated. In this scenario, dis-
covering new (interesting) Web sources could enrich the
domain ontology.

TUCUXI' is the InTelligent HUunter Agent for Concept
Understanding and LeXical Chalning. It adopts a domain
ontology as the expression of the user’s needs. The rele-
vance of the retrieved pages is judged by matching the user-
provided domain ontology against the Map of Meanings, a
simplified, but semantically rich, document representation.
In Section 2 we discuss how the output of an integration
process within the MOMIS OntologyBuilder can create a
domain ontology, while Section 3 illustrates our contribu-
tion for information discovery: we firstly explain how to
extract the Map of Meanings through the Lexical Chain-
ing process; secondly, how to semantically match the do-
main ontology against the Map of Meanings; thirdly, how to
automatically explore the Web looking for concepts rather
than keywords. Section 4 presents some encouraging results
from the comparison between TUCUXI and Google, one of
the most prestigious keyword-based search engines.

1 Pronunciation ‘tookooshee". TUCUXI is a South American river dol-
phin which employs echolocation to find fishes in murky waters.
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(b) DCT: thick arrows = BT, NT, SYN rela-
tionships; thin ones= RT relationships; thin
ones= RT relationships; dashed ones= in-
ferred relationships, solid ones= explicitly
given relationships.

Figure 1. UNI Scenario DCT, where a WordNet
synset is assignhed to each class name.

2. MOMIS OntologyBuilder

Unlike current Semantic Web approaches, the MOMIS
OntologyBuilder starts from local sources to gener-
ate an accurate conceptualization of the domain of inter-
est. More precisely, it provides a reconciled Global Virtual
View (GVV) of heterogeneous data sources[5]. To gener-
ate the GVV, heterogeneous data sources are firstly de-
scribed in a standard way, i.e. wrappers extract local source
schemata and translate them into ODLjs[4], a modi-
fied version of the Object Definition Language. Secondly,
the integration designer is asked to annotate each item of
the sources description (names of classes and attributes)
with one or more meanings according to the WordNet lexi-
con ontology. WordNet[14] is a lexical database that orga-
nizes nouns, verbs, adjectives and adverbs into synonyms
sets (synsets) each representing one underlying lexical con-
cept. The price of imposing the syntactic categorization is a
certain amount of redundancy that conventional dictionar-
ies avoid; on the other hand, the advantage is that funda-
mental differences in the semantic organization of syntactic
categories can be clearly seen and exploited: Word-
Net is founded on the semantic relations between synsets.
When no satisfactory synsets can be associated to a item,

the integration designer can extend the WordNet ontol-
ogy on (her)his own, thanks to WNEditor[3]. Then, starting
from the annotated sources, MOMIS generates a Do-
main Common Thesaurus (DCT), which contains intra and
inter-schema knowledge in the form of synonyms (SYN);
broader/narrower terms (BT/NT); meronymy/holonymy
(RT); equivalence (SYNe,;) and generalization (BT,,;) re-
lationships. The DCT is incrementally built by adding
schema-derived relationships (automatic extraction of in-
tra schema relationships from each schema separately),
lexicon-derived relationships (inter-schema lexical rela-
tionships derived by the annotated sources and WordNet in-
teraction), designer-supplied relationships (specific domain
knowledge capture) and inferred relationships (via equiv-
alence and subsumption computation). Then, the DCT is
exploited together with local sources to generate and semi-
automatically annotate the global reconciled schema
(GVV)[4]. In order to explain how we discover Web in-
formation sources for the GVV enrichment (Section 3),
we briefly describe two case studies among several sce-
narios in which we tested TUCUXI. The DCT in Fig.
1(b) represents the UNI Scenario and derives from the in-
tegration of a relational source University, storing data
about students and staff, an object-oriented database Com-
puter_Science about people at the CS department and a file
system about students’ fees (Tax_Position) (Fig. 1(a)). The
DCT in Fig. 2(b) represents the TEX Scenario, where a re-
lational source Suppliers stores companies selling clothing
and the object oriented source Catalog is about avail-
able wears in a store (Fig. 2(a)).

Suppliers Source

Seller (name, phone, address)
Clothing(code, description)

Purchase (number, name, code, date, price)
FK: name references Seller

FK: code references Clothing

Catalog Source

Company (name, address)

Wear (code, description, number, produced_by : Company)
SportsWear:Wear (fiber)

FormalWear:Wear (sales_promotion)

(a) Sources to be integrated
Company
(37468)

Wear
(14708) Clcthing
l (14708)
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(47250)
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Purchase
(207)

(b) DCT

Figure 2. TEX Scenario DCT, where a Word-
Net synset is assigned to each class hame.




3. Information discovery with TUCUXI
3.1. Map of Meanings generation

Our approach relies on the comprehension of natu-
ral language to preserve the text semantics and provide a
conceptual-based retrieval of documents. To do so, only sur-
face properties of texts can be exploited, since robust NLP
techniques enabling machines to fully understand doc-
uments are not still available. In particular, to take into
account that words representing concepts are naturally con-
nected each others, we have to identify the terms’ mean-
ings and retain semantic relations between them. The
linguistic formalization of text properties due to Halli-
day and Hasan[12] supports our intuition: human readers
are able to understand a written text because each lan-
guage has a set of possibilities for making sentences
hang together (cohesion property) and achieving a logi-
cal sense (coherence property). While coherence depends
on the readers’ point of view, cohesion has a more objec-
tive nature and, as Hoey observed[13], it is mainly provided
by lexis: lexical cohesion can be achieved through reiter-
ation (reinforcement of a concept by repeating a term or
using its synonyms and hypernyms/hyponyms) and col-
location (regular combination of words which often
co-occur, such as meronyms/holonyms)[15]. Lexical cohe-
sion is a clue to identify relations between words and there-
fore represents the context in which terms appear. As shown
by Morris and Hirst[15], a thesaurus can be exploited to ex-
tract semantic relationships between terms and construct
lexical chains. Lexical chains are, formally, groups of se-
mantically related words. Henceforth we will refer them
also as clusters that can be built in three steps: Step I iden-
tifies words suitable to be included in lexical chains (can-
didate words); Step II associates them an appropriate
WordNet synset (word sense disambiguation); Step 1II gen-
erates clusters of related synsets. Only strongly connected
clusters (i.e. clusters in which disambiguated words re-
veal a strong cohesion), named strong lexical chains, form
the semantic representation of the text (Map of Mean-
ings, MM). Henceforth we will refer to the example
about the UNI Scenario to illustrate the MM genera-
tion (Fig. 3(a)).

Step I - Selection of candidate words. Assuming that con-
cepts are best expressed by nouns, candidate words are se-
lected by a part-of-speech tagger. In addition, a shallow
parser identifies compounds, i.e. words created by 2 or more
simple terms. Maintaining a compound as a whole unit
(e.g. computer_science in Fig. 3(a)) captures more seman-
tics than considering the terms separately.

Step II - Word Sense Disambiguation. WordNet meanings
of the candidate words are collected. We expect that user-
provided WordNet extensions[3] will amend thesaurus defi-

Algorithm 1 TUCUXI’s Word Sense Disambiguation

Input: WordNet lexical Database (WNx) and its extensions if any
S={s;: s; is one of the 1..n possible synsets contained in the text}, an ordered set
CW={w;: wj is one of the 1.k candidate words in the text}, W Sj={ws;: ws;
is one of the 1..t possible meanings of wj}, j = 1..k, scoring criteria C.
fori = 1tondo

ask WNx for s; hyponyms, hypernyms, siblings,... meronyms and holonyms

build the list of related synsets RS
end for
fori = 1ton do

select the words in CW whose ws;=s;;

update cohesion vote for the words whose ws is contained in RS; (according

to relationship strength and position of words in text, i.e scoring criteria C);
end for
for j = 1to k do

select the ws; ®°? meaning in W S; (with the highest score or the most fre-

quent one in case of a tie)

store the ws; ®¢°* meaning in the basic units list BU;

for all ws; in WS do

if ws;!= ws; °€°t then
nullify the votes expressed by the ws; synset of the word w; in the previ-
ous phase;
end if

end for
end for
Update S by deleting the s; that are not preserved (and the related list R.S;;)
Output: a list BU of basic units, which stores the most reasonable meaning for
each word in CW, a list of preserved synsets and their related ones.

ciencies in specific topic lexicon. For each retrieved mean-
ing, we acquire a set of related synsets (i.e. its hypernyms,
hyponyms, siblings, cousins, meronyms and holonyms?.
The idea is to (partially) solve the ambiguity of natural lan-
guage through an incremental process guided by the cohe-
sion property. We call basic unit the association between
a candidate word and one of its synsets®. Then, according
both to the strength of lexical relationships and the relative
position in text, each basic unit expresses cohesion votes
for itself and for the other basic units with a semantically
related synset. As described in Alg. 1, for each candidate
word, just the basic unit with the highest preference score is
retained, while the others are eliminated.

Step 111 - Lexical Chaining for Map of Meanings generation
The lexical chaining process is a clustering algorithm (Alg.
2) that takes in input the survived basic units (step II) and
produces as output a set of clusters of disambiguated words
(Tab. 1). Since we assume that MM consists of strongly
connected clusters only, we implemented several strategies
to select them. On the basis of our qualitative experiments
(we do not show them, because of the lack of space), we
observed that the Barzilay and Elhadad’s criterion[2] (see
Alg. 2 for more details) is a good strategy to identify strong
chains, but when documents contain a lot of textual infor-
mation further pruning strategies, such as a user-defined

2 It is worth noting that hypernymy (hyponymy) is the semantic rela-
tion of being superordinate (subordinate) or to belonging to a higher
(lower) class or rank. Since the WordNet organization of nouns
is based on hypernymy/hyponymy relations, it is easy to deduce
the meaning of siblings or cousins of a given synset. Meronymy
(partwhole/HAS-A relation) is held between a part and the whole.
Holonymy, on the contrary, between a whole and its parts.

3 For istance, the noun class in Fig. 3(a) has 4 possible meanings, so it
forms 4 basic units.



Sentences extracted from
http://www.cs.stanford.edu/Cour i html

Candidate Words

Possible Meanings (Synsets and WordNet Glosses)

——— Class(1) 37377 - a collection of things sharing a common attribute;
Class information & Courses. 38085 - a body of students who are taught together;
The Computer Science Education L'c'mcr 37296 - people having the same social or economic status. ...
has information on undergraduate CS courses. 3591 - education imparted in a series of lessons or class meetings. . .
information 33347 - formal accusation of a crime
)7 38929 - a collection of facts from which conclusion may be drawn
[ Candidate words | Selecied Meaning i 27555 - knowledge acquired through study or experience. .
course(3)(10) 3591 - education imparted in a series of lessons. ..
class(1) 3591
information(2) 27555 15044 - a circumscribed area of land or water. ...
course(3) 3591 computer science(4) 28610 - the branch of engineering science ...
computer science(4) | 28610 education(3) 3589 - activities that impart knowledge;
education(5) 3589 28190 - knowledge acquired by learning and instruction. . .
center(6) 27928 v
information(7) 27555 center(6) 39134 - an area that is approximately central ...
undergraduate(8) 47915 undergraduate(8) 47915 - a university student who has not yet received a first degree
cs(9) 28610 cs(9) 62950 - a soft silver-white ductile metallic element
course(10) 3501 28610 - the branch of engineering science ...

(a) Word Sense disambiguation

(b) Candidate words and Their Possible Meanings.

Figure 3. Word sense disambiguation of some sentences extracted from http://www.cs.stanford.edu/

Courses/index.html (see Tab. 2 and 4).

number of chains to be retained, have to be adopted. The
MM of Fig. 3(a) is shown in Fig. 4(b).

Algorithm 2 TUCUXT’s Lexical Chaining Process

Input: BU={buj: buj represents the w; word in CW and the most reason-
able meanings ws; ®%t in W S;), a list of preserved synsets PS and their re-
lated ones, scoring criteria C
Create an empty array L;
for all bu; € BU do
add bu; to the chain in L whose basic units establish the strongest connection
with it (through the bu ; synset or the related ones);
if no chains are suitable then
create a new chain in L with bu;
else
update the score of the selected chain, according to C;
end if
end for
Calculate the avg(score) of chains and the standard deviation st Dev;
Delete (not strong) chains (Barzilay and Elhadad’ criterion: scorecnaqin
avg(score) + 2 x stDew, other pruning criteria if necessary).

IA

Output: The survived lexical chains.

[ Chain# [ Score | Basic Units |

1 54 class(1)/3591 course(3)/3591
education(5)/3589 course(10)/3591

2 2.024 center(6)/27928 information(2)/27555
information(7)/27555

3 1.0 computer_science(4)/28610 cs(9)/28610

4 0 undergraduate(8)/47915

Table 1. Lexical Chains of Fig. 3(a).

3.2. Semantic Matching between the Map of
Meanings and the Domain Common The-
saurus

Both MM and DCT are graphs, i.e. nodes are synsets and
edges are semantic connections between synsets. A trivial
similarity measure is the Synset Match in (1), where Nyg is

CS_Person

) ©
ourse
BTINTNQ327 (3591)
Professor’
RT=0.4006
Student (46822)
(47627)

BTNT=064"
niversity School
Student

member
(44359) (44359)

5
Education
(3589)

S=10

SYN=10

(a) Transformed DCT. Lexical co- (b) MM of Fig. 3(a). Lexical co-

hesion degree = 5,2837. hesion degree = 5,4.

Figure 4. Graphs to be matched. They share
3591 only, RS of MM = 40%.

the number of common concepts in the two graphs, Nsasas
is the number of concepts of MM and N, p e is the number
of concepts of DCT.

N2 .
1—exp (- NsJ\S/ISM , 4fNsmm < Nsper;
SM = 2 (1)
1 — exp ( — —NjV;ZT )7 otherwise.

The SM measure grows rapidly with the increas-
ing number of synsets in common, but if we consider
the perfect synset match only, we will underestimate the
page similarity degree. For instance, the concept Course
in the UNI Scenario DCT is a broader term of Semi-
nar=a course offered for a small group of advanced stu-
dents, so a page with the latter meaning should be judged
more relevant than documents with no course-related con-
cepts at all. Since WordNet-provided relationships,
such as hypernymy/hyponymy (e.g course-seminar) and
meronymy/holonymy (e.g faculty-professor) indicate se-
mantic relatedness between concepts[7], we exploit them




in the cohesion parameter CM (2), where w;; represents
the weight associated to the relationship (or path of rela-
tionships) between the j** synset of DCT (j = 1,...,t)
and the it® synset of MM (i = 1,...,m)* Score(MM)
and Score(DCT;,) represent the lexical cohesion de-
gree among synsets in the MM and in the DCT respec-
tively and are calculated as the sum of the relations weights
(Fig. 4(a) and 4(b)). Since the cohesion degree takes into ac-
count lexical relationships only, it could be necessary to
transform the DCT by clustering its synsets into lexi-
cal chains (Fig. 4(a)). For instance, in the DCT of Fig.
1(b), Student, since it represents a computer_science stu-
dent, is a subset of University_Student, while in the
WordNet knowledge Student has a more general mean-
ing than University_Student.

i=1,...,m
Ej:l,...,t Wij
Score(DCTyy)

CM = i—
SV T wyg

Score(MM)

, 1fScore(DCTtp) > Score(MM);

otherwise.

2

Definition 1 A document is said to be relevant when RS,
the whole Relevance Similarity measure (1), exceeds the
user-defined threshold.

N2
1—exp (- (ﬁﬁ) +(a-CM)), N.um < Npcr;

RS = )

sS .
Nspcr +(a-OM)),

1 — exp ( — otherwise.

3
The parameter a in RS is calculated asa = 1/(Nspor+
Nemwm)-

3.3. The semantic-based crawling strategy

Crawlers are well-known programs used by Google-like
search engines to collect documents from the Web. To face
scalability and performance issues, the so-called focused
crawlers implement Web navigation strategies to retrieve
the maximum number of interesting pages while visiting
the minimal set of irrelevant ones[8]. In essence, they as-
sume that the Web has specific linkage structure in which
pages on a specific topic are likely to link to other docu-
ments on the same topic (short range topical locality)[1].
Instead an intelligent crawler gradually learns the linkage
structure during the exploration. Since TUCUXI exploits
semantics to judge the relevance of a document, we pro-
pose a semantic-driven Web exploration strategy that fol-
lows the intelligent crawling framework in [1]. Each time
a web page is retrieved, it is parsed to split the text from

4 If they are not the same synset: such a case is considered in SM.

the addresses of referred pages (URLs). The crawler keeps
track of the already visited pages as well as the unexplored
ones (candidate URLS). For each candidate URL, some fea-
tures (facts), such as content of the pages which link to it,
are available during exploration, thus can be used to define
the order in which documents have to be retrieved (Def. 1).
More precisely, let us denote C' as the event that makes a re-
trieved page to be relevant. The probability P(C) that the
document associated to a candidate URL will satisfy Def. 1
is the ratio between the number of relevant retrieved pages
(INpyer) and the number of already crawled ones (N¢yi).

P(C) = Nrel/Ncwl 4)

Let E be a known fact about a candidate URL. If we con-
sider E, then the probability for a candidate URL to satisfy
Def. 1 could be increased (P(C|E) > P(C)). The idea is
to evaluate P(C|E) with P(E) (the probability that a can-
didate URL has the feature F) and P(C N E) (the probabil-
ity that a candidate URL has the feature E and satisfies Def.
1, at the same time):

P(C|E) = P(CNE)/P(E) ©)

Then, for the event C and the feature E, we define the In-
terest Ratio (6).

I(C,E) = P(C|E)/P(C) = P(CN E)/(P(C) - P(E))
(6)
Let £ be the composite event of the occurrences of a set
of kevents Fy...Ey,i.e.€E = E;NEsN...Ey. The Com-
posite Interest Ratio is:

k
1(c,&) =[] 1(C, Ey). (7)
=1

The higher is the composite ratio, the higher is the prob-
ability of the candidate URL to satisfy Def. 1, thus it should
be retrieved as soon as possible. We exploit four interest
ratios to determine the retrieval order of candidate URLs.
Three of them are the same described in [1]: Link Based
Learning Iy;p, Sibling Based Learning I, and Content
Based Learning I.,,, and we add a fourth one named
Synset Based Learning Isyy,. Briefly, I;;, expresses the
short range topic locality; I,;; assumes that a candidate
URL has more probability to satisfy Def. 1 if many of its
siblings5 also satisfy it. I.,, considers the set of words in
the DCT and determines if there is some kind of relation
between the probability to satisfy Def. 1 and words appear-
ing in inlinking pages of a candidate URL. Due to lack of
space, please see [1] for the formalization of Ij;,,, I.,, and
Iy, while the Synset Based Learning (Def.2) determines if

5 A web page is said to be a sibling of a candidate URL, when it is re-
ferred by the same page as the candidate.



there is some kind of relation between the probability to sat-
isfy Def. 1 and meanings in inlinking pages of a candidate
URL.

Definition 2 Let S1, Ss,...,S; the t synsets in the Domain
Common Thesaurus. The event U; is true when the synset
S; is present in one of the pages pointing to the candidate
URL. The whole Synset Based Learning interest ratio is:

t

syns H

j=1

(CNU)/(PO)-PT;) @)

The interest ratios are combined together to prioritize
candidate URLs. The priority function PV is (9), where
Wiin, Wsib, Weon aNd Wgyns are user-defined weights. The
higher is a weight, the higher is the importance of the asso-
ciated interest ratio.

PV = wlin'Ilin(C)+wsib'Isib(0)+wcon'Icon+wsyns'Isyns
€))
The algorithm for a semantic-driven Web exploration is
summarized as Alg. 3.

Algorithm 3 Semantic-driven exploration strategy

Input: an empty hash table HT to trace features of crawled pages; a Candidate
URL list CL, URLSs, a DCT, a priority function PV, a relevance threshold RTH.
Insert given URLs in CL (PV'=0);
while CL not empty do
Select the candidate URL in CL with the highest PV
Retrieve the associated web page W P;
Extract the W P semantic document representation;
Calculate the R.S value of W P;
Extract the URLSs contained in W P and add them to CL (if not crawled yet);
add W P and its features to HT;
Update the PV for the pages in CL, according to features traced in HT;
end while

Query 1 UNI “computer science” & courses & professor and information
Query2 | UNI course & location & "computer science” & department
Query 3 UNI "computer science" & professor & "research staff"

Query 4 TEX sportswear & sellers

Query 5 TEX "athletic wear” & suppliers

Query 6 TEX "smart clothing” & wholesaler

Table 2. Queries submitted to Google.

4. Empirical results

The effectiveness of the proposed approach is first eval-
uated as the ability of TUCUXI to filter the Google’s
results. For the UNI Scenario in Fig. 1(b), TUCUXI re-
trieved (all the accessible) pages from Berkeley, New York
State, Princeton and Stanford computer science depart-
ments’ sites (four of the most prestigious US universities)
and performed its semantic analysis and matching. With re-
spect to the queries 1, 2, 3 in Tab 2, a user was asked

to distinguish between relevant and not relevant docu-
ments. After that, for each query and for each site, we re-
trieved the first 100 results (if any) proposed by Google®.
According to the user decisions, the precision (P) and re-
call (R) of Tucuxi (RS value >= 80%) vs Google are
depicted in Tab. 3. These encouraging results can be ex-
plained by the ability of TUCUXI to manage mean-
ings, not mere keywords. For example, concerning the first
query, TUCUXI detects the concept of 3591, course = ed-
ucation imparted in a series of lessons even if the word
course does not appear in the text, i.e. only the synonym
class is used. In addition, as shown in Tab. 4, TUCUXI rec-
ognizes and rankes in a different way, when Professor is
associated to more specific meanings than 46822 some-
one who is member of the faculty at a college or university’ .
Google, at present, is not able to do so. Similar experiments
(queries 4, 5, 6 in Tab 2) about TEX Scenario are carried out
on www.usawear.org, www.texweb.com, www.texbuyer.com
and www.textilefiberspace.com, (CNA’s case studies within
the SEWASIE project). Due to lack of space, we show pre-
cision and recall results only (RS value >= 80%, Tab.
3). As well as in the UNI Scenario, we can say that TU-
CUXI performs better than Google, since it manages
meanings. For instance, thanks to the WordNet lexi-
con knowledge, TUCUXI recognizes that pages about
companies selling 7-shirts and sport suits are interest-
ing even if they do not contain the word sportswear (e.g.
http://www.texbuyer.com/com/79487.htm, RS=81% , never re-
trieved by Google). Finally, the harvest ratio measures
the rate at which relevant pages are acquired (4). In both
the scenarios, TUCUXI (RS value >= 80%) outper-
forms well-known navigation policies such as Random and
Breadth-first strategies (Fig. 5(a) and 5(b)). Thus, con-
sidering also encouraging precision/recall results, our
semantic-driven strategy can be exploited for automati-
cally discovering interesting Web sources.

5. Conclusive remarks

As the best of our knowledge, the selective exploration
of the Web with a semantic analysis of documents has been
never pursued in research. Recently, a new crawler frame-
work was proposed in [10], where, relying on future Se-
mantic Web metadata, an "ontology" is used to focus the
Web search. Instead, our lexicon-driven crawling is suitable
both for Semantic Web and the Web as it is at present.

To ensure an effective enrichment of a domain on-
tology, we aim at discovering data-intensive Web
sites, whose pages display information from a back-

6 By means of a site-restricted search.

7  such as 43770, Associate professor = a teacher lower in rank than a
full professor or 43768, Assistant professor = a teacher lower in rank
than an associate professor.



Query 1 Query 2 Query 3
'UNI Scenario Dataset Google Tucuxi Google Tucuxi Google Tucuxi
R P R P R P
www.cs.berkeley.edu 88 40 88 94 86 38 70 97 87 28 96 100
www.cs.nyu.edu 93 58 98 96 96 45 78 51 94 80 85 93
www.cs.princeton.edu 52 39 98 94 83 46 55 83 80 26 76 76
www.cs.stanford.edu 94 26 94 85 78 45 98 93 23 38 39 62
[ Arithmetic Mean [ 82 [T 41 [ 9492843758 [11[]aHB]H] 8 )
Query 4 Query 5 Query 6
TEX Scenario Dataset Google Tucuxi Google Tucuxi Google Tucuxi
R P R P R P R P R
WWW.usawear.org 78 43 85 86 83 58 93 97 82 41 88 95
www.texweb.com 67 34 79 84 78 66 82 91 74 32 75 92
www.texbuyer.com 57 23 69 82 78 62 86 97 74 52 78 98
www.textilefiberspace.com 67 34 75 80 64 56 73 96 78 44 87 99
Arithmetic Mean [ 67 [ 33 | 77 | 8 | 76 [ 60 | 83 [ 95 [ 77 [ 42 | 82 | 9 |

Table 3. TUCUXI vs Google:

Precision and Recall in %.
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Figure 5. Crawling strategies comparison.

end database. The semantic analysis we proposed de-
rives from the research field of the automatic generation of
summaries[2][11], where documents are supposed to be lin-
guistically well-formed. Nevertheless, Web pages from
data-intensive sources are rarely rich of textual infor-
mation. In such a case, we think that TUCUXI’s lexical
chaining technique could be useful to improve the se-
mantic annotation of data extracted by RoadRunner[9].
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