
MIKS : an agent framework supporting

information access and integration ?

Domenico Beneventano1,2, Sonia Bergamaschi1,2,
Gionata Gelati1, Francesco Guerra1, and Maurizio Vincini1

1 Dipartimento Ingegneria dell’Informazione, via Vignolese 905, 41100 Modena Italy
2 CSITE-CNR, viale Risorgimento 2, 40136 Bologna, Italy

{domenico.beneventano,sonia.bergamaschi,maurizio.vincini}@unimo.it
{gelati.gionata,guerra.francesco}@unimo.it

Abstract. Providing an integrated access to multiple heterogeneous
sources is a challenging issue in global information systems for cooper-
ation and interoperability. In the past, companies have equipped them-
selves with data storing systems building up informative systems contain-
ing data that are related one another, but which are often redundant,
not homogeneous and not always semantically consistent. Moreover, to
meet the requirements of global, Internet-based information systems, it
is important that the tools developed for supporting these activities are
semi-automatic and scalable as much as possible.

To face the issues related to scalability in the large-scale, in this paper we
propose the exploitation of mobile agents in the information integration
area, and, in particular, their integration in the MOMIS infrastructure.
MOMIS (Mediator EnvirOnment for Multiple Information Sources) is a
system that has been conceived as a pool of tools to provide an integrated
access to heterogeneous information stored in traditional databases (for
example relational, object oriented databases) or in file systems, as well
as in semi-structured data sources (XML-file).

This proposal has been implemented within the MIKS (Mediator agent
for Integration of Knowledge Sources) system and it is completely de-
scribed in this paper.

1 Introduction

Providing an integrated access to multiple heterogeneous sources is a challenging
issue in global information systems for cooperation and interoperability. In the
past, companies have equipped themselves with data storing systems building
up informative systems containing data that are related one another, but which
are often redundant, not homogeneous and not always semantically consistent.
The problems that have to be faced in this field are mainly due to both struc-
tural and application heterogeneity, as well as to the lack of a common ontology,

? This work is partially supported by MIUR co-funded projects D2I and ’Software
Agents and e-Commerce’



causing semantic differences between information sources. Moreover, these se-
mantic differences can cause different kinds of conflicts, ranging from simple
contradictions in name use (when different names are used by different sources
to indicate the same or similar real-world concept), to structural conflicts (when
different models/primitives are used to represent the same information). Com-
plicating factors with respect to conventional view integration techniques [4] are
related to the fact that semantic heterogeneity occurs on the large-scale. This
heterogeneity involves terminology, structure, and domain of the sources, with
respect to geographical, organizational, and functional aspects of the informa-
tion use [48]. Furthermore, to meet the requirements of global, Internet-based
information systems, it is important that the tools developed for supporting
these activities are semi-automatic and scalable as much as possible.

To face the issues related to scalability in the large-scale, in this paper we
propose the exploitation of mobile agents in the information integration area,
and, in particular, their integration in the MOMIS infrastructure. MOMIS [8,
16] (Mediator EnvirOnment for Multiple Information Sources) is a system that
has been conceived as a pool of tools to provide an integrated access to het-
erogeneous information stored in traditional databases (for example relational,
object oriented databases) or in file systems, as well as in semi-structured data
sources (XML-file). MOMIS focuses on capturing and reasoning about semantic
aspects of schema descriptions of information sources for supporting integra-
tion and query optimization. This proposal has been implemented within the
MIKS (Mediator agent for Integration of Knowledge Sources) system and it is
completely described in this paper.

Mobile agents can significantly improve the design and the development of
Internet applications thanks to their characteristics. The agency feature [39]
permits them to exhibit a high degree of autonomy with regard to the users:
they try to carry out their tasks in a proactive way, reacting to the changes of the
environment they are hosted. The mobility feature [41] takes several advantages
in a wide and unreliable environment such as the Internet. First, mobile agents
can significantly save bandwidth, by moving locally to the resources they need
and by carrying the code to manage them. Moreover, mobile agents can deal with
non-continuous network connection and, as a consequence, they intrinsically suit
mobile computing systems. All these features are particularly suitable in the
information retrieval area [20].

MIKS is an agent framework for information integration that deals with the
integration and query of multiple, heterogeneous information sources, containing
structured and semi-structured data. This framework is a support system for
semi-automatic integration of heterogeneous sources schema (relational, object,
XML and semi-structured sources); it carries out integration following a semantic
approach which uses Description logics-based techniques, clustering techniques
and an ODM-ODMG [24] extended model to represent extracted and integrated
information, ODMI3 .

The MIKS system can be defined as an agent middleware system that inte-
grates data belonging to different and potentially heterogeneous sources into a



global virtual view and offers support for the execution of queries over the global
virtual schema [15]. Middleware systems dealing in some way with a set of data
sources commonly fall back on wrapper components or simply wrappers [54].
Wrappers components encapsulate existing legacy data sources and give a more
presentable and understandable format according to some preferred common
data model.

The outline of the paper is the following. Section 2 presents the basics related
to the approach we have chosen in tackling the integration of heterogeneous data
sources, section 3 reports the MOMIS system. Section 4 introduces the MIKS
system, illustrating the role of the agents in a framework supporting information
access and integration. Finally, section 6 discusses the related work in the area
of intelligent information agents.

2 A feasible approach to intelligent information

integration architectures

In this section we introduce the basics related to the approach we have chosen in
tackling the integration of heterogeneous data sources. In the first sub-section we
present the reference architecture and in the second sub-section we step through
the integration process.

2.1 System Architecture

Like in other integration projects ([2, 57]), we have chosen to pursue a “semantic
approach” to information integration, i.e. we represent the content of information
sources by means of conceptual schemas (or in other terms metadata). This
allows to process data not only from a syntactical point of view but also according
to their meaning in order to infer extensional and intensional relationships among
them. Given the goal of our system, our reference architecture has been the I3

architecture as specified in [38] for the Intelligent Integration of Information.
Figure 1 shows the five fundamental families of I3 Services and the primary

ways in which they interact. In particular, two salient axis are definable to em-
phasize the different roles of the I3 services. The vertical axis, that spans the
families (1), (3), (5), is focused on the flow and manipulation of information from
raw Information Sources up to the Coordination Services. Then, an horizontal
axis connects the Management family and the Coordination family. This axis
emphasizes a critical aspect of the I3 Reference Architecture, i.e. the role of the
Management family in order to locate useful information sources and to exploit
the local data structures.

Our system mainly exploits services belonging to the vertical axis: in partic-
ular the family (3) has been completely investigated. In previous work, we faced
the issues related to the semantic integration and transformation, developing
and implementing a methodology to integrate schema of heterogeneous informa-
tion sources. Our research has highlighted that besides the functional elements
belonging to the reference system architecture, a set of functional extensions



Fig. 1. Reference System Architecture



(family 4 in the architecture) is required in order to support designers during
the integration process, especially when delaying with both semi-structured and
structured sources. Thus, our approach has lead us to the introduction of the
following services: a Common Thesaurus which has the role of a shared ontology
of the source and reasoning capabilities based on Description Logics.

More precisely, the Common Thesaurus builds a set of intra and inter-
schema intensional and extensional relationships, describing inter-schema knowl-
edge about classes and attributes of sources schemas. Further, designers are left
free to supply any further domain knowledge that can help refine the integra-
tion process. The Common Thesaurus provides a reference on which to base the
identification of classes candidate to integration and subsequent derivation of
their global representation.

As one of the goals of our integration system is revising and validating the
various kinds of knowledge used for the integration, we have combined within
the architecture reasoning capabilities of Description Logics with affinity-based
clustering techniques.

In the following, we will consider the functional elements related to the Co-
ordination family and propose a Multi-Agent System where coordinations take
place in order to accomplish the required integration and querying functionali-
ties.

2.2 The Integration process

The overall information integration process we have assumed for our purposes
is articulated in the following phases:

1. Generation of a Common Thesaurus.

The Common Thesaurus is a set of terminological intensional and extensional
relationships, describing intra and inter-schema knowledge about classes and
attributes of sources schemas. In the Common Thesaurus, we express inter-
schema knowledge in form of terminological and extensional relationships
(synonymy, hypernymy and relationship) between classes and/or attribute
names;

2. Affinity analysis of classes.

Relationships in the Common Thesaurus are used to evaluate the level of
affinity between classes intra and inter sources. The concept of affinity is in-
troduced to formalize the kind of relationships that can occur between classes
from the integration point of view. The affinity of two classes is established
by means of affinity coefficients based on class names, class structures and
relationships in Common Thesaurus.

3. Clustering classes.

Classes with affinity in different sources are grouped together in clusters
using hierarchical clustering techniques. The goal is to identify the classes
that have to be integrated since describing the same or semantically related
information.



4. Generation of the mediated schema.

Starting from the output of the cluster generation, we define, for each cluster,
a Global Class that represents the mediated view of all the classes of the
cluster. For each global class a set of global attributes and, for each of them,
the intensional mappings with the local attributes (i.e. the attributes of the
local classes belonging to the cluster) are given.

2.3 Query processing

A data integration system, based on conventional wrapper/mediator architec-
tures, usually allows the user to pose a query and receive a unified answer with-
out the need of: locating the sources relevant to the query, interacting with each
source in isolation and combining the data coming from the different sources.
In our framework, the user application interacts with the system to query the
Global Schema by using the OQL3

I language. Using the mapping between lo-
cal and global attributes, the Query Manager generates in an automatic way
the reformulation/optimization of the generic OQL3

I query into different sub-
queries, one for each involved local source (see [10]). To achieve the mediated
query result, the Query Manager has to assemble each local sub-query result
into a unified data set.

In a mediator architecture, the availability of several heterogeneous sources
adds many novel issues to the query processing and optimization problem. From
a theoretical point of view, solving a user (mediated) query, i.e. giving a single
unified answer w.r.t. multiple sources, implies to face two main problems: query
reformulation/optimization [31, 47, 30, 32, 56, 40, 44] and object fusion [53, 63].

Semantic Query Optimization In a mediator architecture the query man-
ager usually relies on the availability of a global schema, the source schemata
and a mapping between the two. On the other hand, the heterogeneity of infor-
mation sources to be integrated often entails significant overlap or redundancy
among them. Exploiting such an extensional knowledge is an important task in
the query planning phase since most of the execution costs concerns the cost
for querying remote sources, because of the high connection overhead, long com-
putation time, financial charges and temporary unavailability. In [10] we have
discussed the introduction of extensional knowledge as an additional knowledge
allowing semantic optimization during the query planning phase.

In this context, besides incoherence detection and factor removal, the main
achievements of semantic query optimization are related to the minimization of
the number of sources to be accessed and the maximization of the selectivity of
the query sent to the sources.

To illustrate the problem, let us consider a mediator integrating two sources.
Suppose that the first source provides class Student(name,email,year,tax)

and that the second source has Professor(name,email,dept). Let us assume
that the outcome of the integration phase is the mediated global schema with the
global class UniversityPerson(name,email,year,tax,dept). Let us consider
the following query:



Q: select email

from University_Person

where year = 2002

and (dept =’cs’ or tax < 200)

Our semantics of a global class is based on the following hypothesis, called se-
mantic homogeneity: the objects of UniversityPerson are objects of Student

and/or of Professor; objects instantiated both in Student and Professor are
individuate by considering the name attribute value and these objects have the
same value for the common attributes. Thus, intuitively, the above query has to
be reformulated on the basis of the local classes, as follows:

QS: select email,name,tax

from Student

where year = 2002

QP: select name

from Professor

where dept = ’cs’

and then:

Q: select email

from QS

where tax < 200

union

select email

from QS, QP join on (QS.name=QP.name)

where year = 2002

Now, let us suppose that the integration designer introduces the extensional
knowledge that the local classes Student and Professor are disjoint. Then,
in the above reformulation the answer of QS, QP join on QS.name=QP.name is
empty and thus Q has to be reformulated only on the local class Student, as
follows:

Q: select email

from Student

where year = 2002 and tax < 200

This example shows the main achievements of semantic query optimization
of our method: (1) the minimization of the number of sources to be accessed and
(2) the maximization of the selectivity of the query sent to the sources.

2.4 Managing extensional knowledge

A fundamental aspect of semantic query optimization is the management of the
extensional knowledge. The main issue is that a set of extensional assertions



which is initially verified by local sources can be violated if data are modified in
one or more sources over time. Checking the consistency of the data against the
extensional assertions is a very complex and challenging point. In [27] a frame-
work to monitor and enforce distributed integrity constraints in loosely coupled
heterogeneous information systems is presented. In our context, as a mediator is
not the owner of the data stored in the local classes but it only provides a virtual
view, we are interested only in the verification of integrity constraints. Nonethe-
less finding a solution still remains a complex activity. Thus, the main goal has
to be that of reducing the transfer of data among remote heterogeneous sources.
A useful optimization in a mediator environment is to be able to verify global
extensional assertions by only accessing local data. Reference [36] describes a
method for checking distributed constraints at a single source whenever possi-
ble. Given a global constraint and some data to be inserted in a local source, a
local condition is produced in order to verify the consistency of local data. The
consistency of local data is proven if (a) the local condition is (locally) satisfied
and (b) before the new data were inserted, the global constraint was satisfied.
this optimises the verification process as no remote data have to be accessed.

3 The MOMIS project

Given the set of functionalities and how they have to work, a system can be
designed following diverse approaches. A classical object-oriented implementa-
tion is feasible [42]. This approach is particularly suited to achieve client-server
architectures. This way, the server acts as a centralised facility where all the
computation takes place, while clients can be envisaged as lighter desktop ap-
plications and user interfaces. The server could comprise of more machines: the
objects that provide the services on the server side can be distributed, typically
using the CORBA [35] standard framework. Anyway, we can still maintain the
server as a logically unified facility although its services are distributed over a
local cluster of servers. This configuration is useful when the system is meant
to operate in a limited and close search domain, i.e. search domains that are
well-known as far the type and the number of sources to be integrated. A typical
scenario of this sort could be represented by a small enterprise whose main goal
is managing the few heterogeneous data sources belonging to the local informa-
tion system. Users of the systems are usually the few analysts charged within
the organisation of data monitoring and retrieval.

Within the MOMIS (Mediator envirOnment for Multiple Information Sources)
project [17, 6, 16], we ourself have experienced the design and implementation
of an object-oriented client-server integration system, that follows the archi-
tecture above presented. The MOMIS system has obviously been conceived to
provide an integrated access to heterogeneous information stored in traditional
databases (e.g., relational, object oriented) or file systems, as well as in semi-
structured sources (XML files in particular). Figure 2 shows the architecture of
the MOMIS system, based on the I3 schema of Figure 1 : at the bottom layer



we have the schema of information sources, while the layers above provide the
semantic integration and the coordination management support.

Fig. 2. The architecture of the MOMIS system

As depicted in Figure 2, the system is composed by the following functional
elements that communicates using the CORBA standard:

– Wrappers: The wrappers in MOMIS are the access point for the data sources.
This implies that independently from the type of the underlying source (rela-
tional, object, structured and so forth), data must be presented in a standard
way. Wrappers are CORBA objects connected to some sources and are able
to describe the source structure using the ODL3

i language. Further, wrappers
supply a way to query the source using the OQL3

i language;



– Mediator: It is composed of two modules: the Global Schema Builder (GSB)
and the Query Manager (QM ). The GSB module processes and integrates
ODLI3 descriptions received from wrappers to derive the integrated repre-
sentation of the information sources. The GSB is the main CORBA object
to access the MOMIS integration services. The GSB is composed by two
modules:

• SIM (Source Integrator Module): extracts intra-schema relationships
starting from a relational, object and semi-structured source. Moreover
this module performs the semantic validation of relationships and infers
new relationships by exploiting ODB-Tools capabilities.

• SLIM (Sources Lexical Integrator Module) extracts inter-schema rela-
tionships between names and attributes of ODLI3 classes of different
sources, exploiting the WordNet lexical system.

All information about integration are then saved in the Global Schema which
is defined as a CORBA object. A Global Schema object contains all infor-
mation for querying the resulting global schema by a query manager object.
The QM module performs query processing and optimization. In particular,
it generates the OQLI3 queries for wrappers, starting from a global OQLI3

query formulated by the user on the global schema. Using Description Log-
ics techniques, the QM component can generate in an automatic way the
translation of the global OQLI3 query into different sub-queries, one for each
involved local source. The QM is also responsible for synthesising the results
of the sent sub-queries into one global answer to the original global query;

– The ODB Tools Engine ([12]), a tool based on the OLCD Description
Logics ([9, 18] which performs schema validation for the generation of the
CommonThesaurus and query optimization ([11];

– The ARTEMIS Tool Environment, a tool based on affinity and clustering [22,
23], which performs classification of ODLI3 classes for the synthesis of global
classes.

– The SI-Designer module, which provides the designer with a graphical in-
terface to interact with SIM, SLIM and ARTEMIS modules showing the
extracted relationships and helping her/him in the Common Thesaurus con-
struction. This way, the integration develops as a semi-automatic process
where the designer can evaluate the result of the various steps and even-
tually try to modify the result according to his/her understanding. Once
the Common Thesaurus, has been built, SI-Designer uses the ARTEMIS
module to evaluate a disjoint set of structural similar classes. SI-Designer
automatically generates a set of global attributes for each global class and a
mapping table which maps each global attribute into the local attributes of
the classes in the cluster.
For a detailed description of the mappings selection and of the tool SI-
Designer which assist the designer in this integration phase see [5].

Finally, in MOMIS the extensional knowledge is provided by the integration
designer as a set of assertions: containment, equivalence and disjunction among
local classes of the sources involved in the integration. The basic assumption



is that these designer-supplied assertions are always verified over time. In the
actual implementation, there is no verification tool to monitor the state of the
sources against the extensional assertions.

4 The role of the agents: the MIKS system

When the application horizon gets wider, the search has to be extended to
a larger and more distributed amount of data, heterogeneity related to data
structures and semantics increases, the number of users can become much more
sizeable and services based on a client-server architecture may not represent the
most suitable and comprehensive solution. The system has to meet requirements
against flexibility in terms of system configuration and user needs, pro-activeness
in terms of responses to a changing environment, scalability in the number of
users and reliability in terms of coping with an unstable environment. An ap-
proach that tackles these issues and that has attracted the attention of the
research community especially during the last decade is that based on software
agent technology [19] and multi-agent systems (MASs)[62]. The agent paradigm
[59] proposes to design and implement systems where agents act autonomously
while they can still aim at cooperating with other agents to achieve a complex
task. MASs are those where agents are organised in societies where communi-
cation, interaction and coordination are possible. In our work we are concerned
with intelligent information agents [43]. They are mainly characterised as holding
intelligence (they manipulate information) and mobility (they can move through
the network). The MIKS system hence comprises of a society of agents providing
advanced information management functionalities. The advantage of the use in
the MIKS infrastructure of intelligent and mobile software agents for the au-
tonomous management and coordination of the integration and query processes
have been introduced in [14]. Related work on the use of agents in information
management systems (such as the Infosleuth project) is reported in section 6.

In the MIKS system, the exploitation of intelligent information agents (agents
for short) improves the flexibility, as a number of system configurations are pos-
sible. As each component (i.e. agent) can be placed at whatever available host
or data source and still provide the service it has been designed for, what in a
client-server approach are the server side functionalities can be distributed and
further moved while the system is running. On the client side, different solutions
are possible in that agents allow for a number of devices to use the MIKS sys-
tem, from desktop computers to PDAs to mobile phones. Agents can show to
users services and interfaces according to the particular features of the device in
use and deliver contents while users are moving wearing their portable devices.

Decomposing the system into independent and autonomous entities allow to
set up configurations that respond to diverse level of granularity. According to
the specific application scenario, the designer can choose whether to consider
each component as a stand-alone entity or to group some components to create
macro-entities whose components are joint as a whole. Throughout the design



phase, we have chosen to define agents according to the step they come into play
(when) and the service they provide (what) within the integration process.

Notice that, following [43], mediators agents are characterised by three ca-
pabilities:

1. translating among diverse ontological domain to build a uniform semantic
view of a given domain of interest

2. decomposing and executing complex queries
3. fusing partial answers.

We can distinguish between pure integration capabilities (1) and querying capa-
bilities (2 and 3). We have therefore split the system into two parts. The first is
meant to provide the functionalities for supporting the integration process, while
the second supports the querying phase. This distinction we have taken when
designing the agent-based MIKS system. The resulting architecture comprises of
two multi-agent systems (the first supporting the integration process and the
other supporting the querying phase). The two multi-agent system are meant to
be interoperable.

This has produced the side effect of splitting the functionalities of compo-
nents (see Figure 1) according to the phase they participate in. For instance,
wrappers are traditionally meant to support both the translation of the data
source schema into a common data model and the execution of queries. In build-
ing the MIKS wrapper architecture there have been some driving goals. First,
wrappers should be able to evolve over time. Wrappers should have the dynamic
capability of adding new functionalities to their core behaviour. Secondly, wrap-
pers should be flexible enough to be able to wrap sources which expose different
services and capabilities, such as query processing capabilities. Thirdly, wrappers
should have strong interaction capabilities with components requesting either in-
formation about the source or information contained in the source. Agents hold
the properties such as pro-activeness and the ability to adjust their behaviour
according to the environment that we find well-matched for designing and im-
plementing wrappers. In our framework, these functionalities have been kept
separated (namely the Translator agent and the Query Support Agent) because
they come into play in realising two different services of the MIKS system. Defin-
ing the MIKS wrappers, we have found agent technology particularly useful. It
defines a very flexible way of managing distributed components, from creation
to migration to replication, that help shape the system configuration according
to the particular operative scenario. The strong support for interoperability and
conversation inherently distinguishing agents has represented an advantage as
far as interactions and information exchange among the system components is
concerned.

4.1 A Multi-Agent System for supporting the MIKS integration

process

The MAS we have designed for integration purposes includes agents that support
all of the four phases we have presented in section 2.2. Agents carry out activities



for manipulating data to create information at higher levels of abstraction. Figure
3 depicts how agents are organised within the MAS.

Fig. 3. Classification of agents for supporting the integration process

The arrows highlight that the information can flow between the agents of
different layers at either end of the arrows.

Starting from the left side of Figure 3, we find the System Agent (SA). It
performs administrative tasks like system configuration monitoring and agent
life-cycle management.

As the distribution of agents has the primary aim of distributing the workload
to the MIKS system, the SA acts as the system monitor. It helps estimate the
system status and workload and it is the one which decides when and where
agent should migrate. This in turn realises the workload balancing mechanism.
The SA manages the life-cycle of agents. It makes provision of an environment
which is meant to host agents (code, data and status) and permits them the
execution of their algorithms. The SA and more in general the agents, have been
built using the JADE environment [45], a FIPA-compliant development tool [33].

The middle and right-side column show the agents and tools required for the
integration process. Agents are grouped along three layers.

Rising up from the bottom of the middle column, in the Data Source layer
we find the Translator Agents (TAs). A TA acts during the phase in which



the source is recognised and its content has to be expressed using the ODL3

I

language. The TAs have the following functionalities inside the MIKS system:

1. they can inherently adapt to a variety of data sources (relational DBMS,
object-oriented DBMS, structured and unstructured documents)

2. they build the ODLI3 description of the underlying data source(s) and keep
it up-to-date according to the committed changes. Whenever this happens,
TAs communicate the changes to the agents belonging to the upper level,
the Global Schema Builder layer

3. they provide a description of the services and query capabilities of the source
and constantly report their status to the upper layer agents. Knowing the
query capabilities of the sources is essential during the translation of the
global query into the set of local queries in order to draw a query plan
that is actually executable. Some interesting proposals facing the problem
of querying information sources which provide different levels of query ca-
pabilities have been introduced in [25, 37, 57]. The aim is pruning efficiently
out information sources that are unsuitable for a given query and generating
executable query plans.

In the Global Schema Builder layer are grouped the agents that support
the integration process. Proxy agents are information collectors. They acquire
the local schemata created by the TAs. This knowledge base will be manipulated
and enriched during the integration activities by the other Global Schema Builder
layer agents and maintained in the corresponding Proxy agents.

After having acquired the set of local schemata, Thesaurus Integrator Agents
(TIAs) and Validation Integrator Agents (VIAs) carry out the reasoning and
inference activities required to semantically integrate data. TIAs are charged of
extracting intensional intra/inter schema relationships. They have been subdi-
vided into two types:

– TIAs that separately analyse the local ODLI3 schemata in order to extract
terminological and extensional relationships holding at intra-schema level

– TIAs that analyse the set or subsets of local ODLI3 schemata in order to
extract terminological relationships holding at inter-schema level.

VIAs are charged of interacting with the ODB-Tools to infer new relationships
that hold at intra-schema level. Further, VIAs validate the whole set of relation-
ships that have been discovered so far.

Together with designer-supplied relationships (as we will see when describ-
ing Designer Agents), these are used to build the Common Thesaurus, which
represents the ontology of the given domain of integration. This completes the
first two steps of the integration process. Clustering Agents generate the set of
structural similar classes (clusters) and the corresponding global classes. This
leads to the generation of global attributes and a mapping-table.

Notice that a common feature of the agents belonging to the Global Schema
Builder layer is the interaction with the MIKS system tools. These are either
knowledge bases (as the WordNet data base) or already existing applications



(as ARTEMIS and ODB-Tools) developed in other research projects. All of the
tools have sufficiently sophisticated interfaces to allow interaction with other
applications. Thus, it is easy to make them interoperate with agents. This can
be done by agentifying these applications (agents that are expressively being
designed for exchanging data and calling functions of the tool) or by exposing
the functionalities of the tools as web services.

At the end-user level, Designer Agents (DAs) are available. Their main func-
tionality is providing designers a graphical user interface towards the MIKS sys-
tem, its configuration and the data it integrates. They are much like the MOMIS
SI-Designer module that provides the designer with a graphical user interface
that shows the Global Virtual View (GVV). Details can be found in [5, 8]. The
main difference is that DAs do not directly interact with the MIKS tools, but
only with agents. A DA collects this information by interacting on a regular
basis or on-demand with the agents presented so far. The system configuration
is retrieved from the SA while an overview on sources, local schema, terminolog-
ical and extensional relationships (inter- and intra-schema) are retrieved from
the underlying layers. Further, DAs allow designers interacting with the other
agents (and indirectly with the MIKS system tools), thus enabling control over
the integration process (for instance, choosing the sources to be integrated and
selecting the ”best” clustering configuration among the proposed alternatives).

4.2 A Multi-Agent System for supporting global query execution

The Global Schema gives users an integrated view over data that were previ-
ously scattered over different places and applications and had to be accessed
separately both from a logical and physical viewpoints. This is a very powerful
service given the initial heterogeneous information environment. Nevertheless,
a comprehensive attitude towards information management includes not only
displaying the whole range of data, but also a way of submitting queries in order
to select particular set of data. This is very useful if we want to restrict the focus
of our analysis to what is really important for our purposes. The MIKS system
allows users to submit queries over the Global Schema (global queries). Similarly
to other semantic approaches, the querying phase consists of three steps:

1. semantic optimization
2. query plan execution
3. fusion of local, partial answers.

We refer the reader to [10] for more details about the techniques deployed to
realise these three steps. We have designed a MAS for supporting the whole
phase of global query solution. Agents perform activities for manipulating global
queries to create queries at lower level of abstraction (local queries) that are
hence executable on data sources. Local answers have then to be synthesised
into a global answer. Notice while the integration process is essentially a one-
way bottom-up information flow starting from the source contents and ending up
with the generation of a GVV, the querying phase is a two-way process: top-down



when users submit queries over the GVV and bottom-up when local answer are
made available and have to be merged to compose the global answer. Our MAS
reflects the nature of the querying process. Figure 4 illustrates the organisation
of agents. The arrows highlight that the information can flow between the agents

Fig. 4. Classification of agents for supporting the querying phase

of different layers at either end of the arrows. The right-side and left-side columns
are the same we have just described above for the MAS supporting information
integration. We will focus on the middle column. This time we will proceed from
the top layer down.

In the end-user layer we find User Agents (UAs). This reflects the shift in the
type of system users: information integration requires interaction with designers,
query processing is expressively made available so that users can submit actually
access data they are interested in.

In the setting of distributed services available on the network, users do not
usually get access to the desired services directly at the facility that provides
them. They use applications running on hosts they are using. Besides the tradi-
tional wired way of getting connected to local or wide networks or the Internet, in
recent years the usage of wireless devices has become more and more recurrent.
These kinds of mobile devices are characterised by strong limitations in terms
of battery autonomy, processing power and bandwidth if compared to desktop



and personal computers. These limitations have to be taken into account when
interfacing the MIKS system to mobile users. Falling back on client-side appli-
cations could not be the most effective solution and sometimes it could be even
impracticable to install them (especially when needs arise on the fly).

User-side applications offer an interface to some underlying capabilities that
ultimately allow the access to services residing on some remote hosts on the
network. The wide acceptance of the World Wide Web (simply Web) [28] as
main application for information delivering makes web browsers a very appeal-
ing means for supplying user interfaces whatever the underlying services are.
Often a simple web browser is not sufficient to enable users the usage of more
complex services. An example is the provision of web-based database connectiv-
ity that requires the usage of JDBC drivers [50]. A detailed discussion of this
topic can be found in [55]. In general, for web-based services specific capabilities
have to be added as client side applications and web browsers have to get hold
of them on the fly. This is the reason modern web browsers are Java enabled.
There seems to be two major approaches to the provision of complex services
on the Web. The first foresees code downloading to user hosts in order to en-
able the access to desired services. It is the case of Java applets ([49]) . The
second creates a process whenever a user requests a service. The process serves
that specific request and then terminate. It is the case of Java servlets ([51]).
We will not take into consideration this second choice as it refers to traditional
client-server architectures. Java applets can be seen as a first step towards agent
technology: they move to the user host on-demand and execute some task on
his/her behalf. For instance, current approaches to distributed database access
based on applets have become increasingly popular in the last decade. As Pa-
pastavrou et al. show, a drawback of the use of applet-based service interfaces
in this setting is that not only code has to be downloaded (that is pretty much
comprehensible and inescapable) but at least an additional JDBC driver has
to be downloaded and initiated. This process results in heavy procedures that
could be not feasible in the case of devices with bounded resources (especially
low memory space and low bandwidth connectivity). Agent technology is a way
to overcome these limitations, adapting the fruition of the provided services to
the particular features and capabilities of the worn device. Defining UAs means
in turn defining a new kind of lightweight interfaces to remote services. UAs are
responsible for collecting user queries, user preferences and device features in
order to build user profiles. User queries are collected as OQLI3 statements. As
future work, we are going to provide users with a more advanced and powerful
interface, like the one proposed in [52]. User profiles serve in turn to know which
priorities have to be deemed when assessing the relevance of the information and
how they can be transmitted and displayed to end users. Further, exploiting user
agents has another important facet: users have to keep connections up only for
a limited amount of time, i.e. the time required to send the agent code and data
and the time required to collect results. Altogether, the user agent acts as a filter
against the data they are retrieved by the MIKS system. The other modules of
the MIKS system cannot execute this functionality as they are meant to provide



the overall outcome of the integration and querying processes (GVV and global
answer). The filtering has to be done according to user preferences and device
capabilities. User agents endow with a realistic mechanism to pledge a certain
quality of service.

In the Query Manager layer are grouped the agents that carry out global
query decomposition and partial answer merging. Rewriter Agents (RAs) operate
on the query by exploiting the semantic optimisation techniques [7] [12] [58]
supported by ODB-Tools [9, 29, 13] in order to reduce the query access plan
cost. The query is rewritten incorporating any possible restriction which is not
present in the global query but is logically implied by the Global Schema (class
descriptions and integrity rules).

Mapper Agents (MAs) express the rewritten global query in terms of local
schemas. Thus, a set of sub-queries for the local information sources is formu-
lated. To this end, MAs dialogue with Proxy Agents that hold the knowledge
about mapping table, global and local schema. In order to obtain each local
query, the mediator checks and translates every predicate in the where clause.

Planner Agents (PAs) are charged to take the set (or subsets) of local queries
and produce the executable query plan. The goal of PA is to establish how much
parallelism and workload distribution is possible. Considering that queries are
assigned to Query Agents (QAs) that move to local sources, creating a plan
means trying to balance different factors:

– how many queries have to be assigned to each single QA
– which sources and in which order each QA has to follow in order to solve the

assigned queries or to fuse partial results.

The choice of the number of query agents to use can be determined by analyzing
each query. In some cases, it is better to delegate the search to a single query
agent, which performs a trip visiting each source site: it can start from the source
that is supposed to reduce the further searches in the most significant way, then
continue to visit source sites, performing queries on the basis of the already-found
information. In other cases, sub-queries are likely to be quite independent, so it
is better to delegate several query agents, one for each source site: in this way
the searches are performed concurrently with a high degree of parallelism. This
allow for decentralisation of the computational workload due to collecting local
answers and fuse them into the final global answer to be carried to the user.
Future work will take into consideration more advanced techniques as reported
for instance in [46, 1].

QAs move to local sources where they pass the execution of one or more
queries to Query Support Agents (QSA). A number of advantages are implied by
moving to local sources. First, by moving locally to the source site, a query agent
permits to significantly save bandwidth, because it is not necessary to transfer a
large amount of data, but the search computation is performed locally where the
data resides. Second, users can queries also sources that do not have continuous
connections: the query agent moves to the source site when the connection is
available, performs locally the search even if the connection is unstable or un-
available, and then returns as soon as the connection is available again. Finally,



this fits well mobile computing, where mobile devices (which can host user ap-
plications, agents and/or sources) do not have permanent connections with the
fixed network infrastructure.

QSA afford translation services between the OQL3

I language and the na-
tive query language of the data source. This step is required to make queries
executable by local information management system.

When the local answer is available, the corresponding QA has to map these
data (whose structure follows the local schema) to the global schema. For doing
this, the QA interacts with Proxy Agents to know the set of mapping rules
related to the source. For instance, given that the attribute name in the Global
Schema maps to the attributes lastname and firstname in the local source, the
QSA has to put together the values of the two attributes in order to obtain the
value for the global attribute name.

4.3 Further agent roles

Besides supporting the integration process and the querying phase, agents are
suitable within the MIKS system for a number of complementary and precious
tasks. In particular, we highlight here the extensional assertions on the data
sources and the searching for new potential data sources.

Agents managing extensional knowledge As we have already stated, in the
implementation of MOMIS, there is no verification tool to monitor the truth of
the extensional assertions on the data sources. We have also seen that methods
to check and enforce integrity constraints over a distributed set of information
sources have been defined [27, 36]. We claim agent technology can be efficiently
deployed to develop a framework for constraint verification in a mediator envi-
ronment. Intuitively we can define Check Extensional Assertion Agents (CEAAs)
for each data source. In order to carry out its task, a CEAA should know the
assertions concerning the classes of the source and the operations on the source
data (held by Proxy Agents) that can potentially lead to a violation of the exten-
sional assertions. Whenever such an operation occurs, the CEAA communicate
and coordinate with the other CEAAs to check the validity of the extensional
assertions. Intuitively, such activity requires some transfer of data among data
sources. Our goal is to integrate existing approaches as [27, 36] within our frame-
work. We leave these new refinements of our framework as future work.

Searching for new data sources The set of remote sources to be integrated
into the MIKS global view can be made up by sources autonomously deciding
to grant the system their knowledge. On the other hand, at any moment a need
to increase the number of the sources may arise in order to enhance the quantity
and quality of available data. In such a case, the system has to search for new
potentially interesting sources in a certain domain (e.g. Internet). The search
may exploit in this case intelligent and mobile agents. For doing so, the system
has to form the list of sources to be visited. This could be done by means of a



domain search according to the ontology contained into the Common Thesaurus
and held by Proxy Agents. Then, the SA creates and coordinates a set of agents
to be deployed. The SA allots the addresses of the list among some Hunter
Agents (HAs). Different policies can be enforced to control the activity of the
HAs and to keep track of the state of the search. Once arrived at the assigned
site, a HA has to introduce itself, clarify the goal of its visit and negotiate the
availability of the source to grant access to a part or the whole of its content. If
the result of the negotiation phase is positive, a TA has to be sent to the source.

5 Agent interaction patterns

As we have seen, diverse types of agents populate the two MASs of the MIKS
system. During the design phase, the main functionalities of the system have
been decomposed into a number of smaller services assigned to agents. Agents
can move, thus relocating the services they provide. Figure 5 and 6 show the
two extreme configurations the system can operate:

1. the former depicts how a client-server-like configuration is realisable,
2. the latter depicts a fully distributed architecture.

Arrows depict the most important interactions that occur among the system
components.

The MIKS agents interact in order to achieve the overall goals of the MIKS
system. Many interaction patterns are feasible as information has to flow from
one agent to another. This can happen among agents either belonging to the
same MAS or belonging to two different MAS. In the end, splitting the system
into two MASs has served the purpose of keeping the architecture design clean
avoiding waste of resources or overlapping in tasks among the agents.

In this section we will present some possible interaction patterns involving
the agents we have presented so far. The purpose it to convey the reader the
dynamics of agent interactions that can happen within the MIKS agent archi-
tecture. For the sake of clarity, we will refer to agents specifying their full name.

In a possible real scenario (Fig. 7), the System Agent spawns the agents
required for the particular activities to be carried out.

At the beginning of the integration process, it interacts with the Designer
Agent which reports which source have to be integrated. The list of interesting
data sources can be available or filled with the suggestions of Hunter Agents.
Then, the System Agent spawns Translator Agents in order to wrap the desired
data sources. Arrows are bi-directional to mean that agents engage in dialogue
in order to exchange information and that interactions may happen not only
during initialisation but whenever need arises and throughout the whole system
life.

During the integration process there are two main interaction patterns:

1. agents communicating with Proxy agents for retrieving data to be manipu-
lated and storing enriched information



Fig. 5. The MIKS agents organised into a client/server configuration

2. Designer Agent communicating with agents belonging to the Global Schema
Builder layer in order to interact during the various steps of the integration
process.

Figure 8 show the complete set of interactions. Notice the User Agents can
request and obtain from Proxy Agents the Global Virtual View, while Hunter
Agents can update the reference ontology according to which the search has to
be carried out.

The query solving phase foresees a more structure interaction pattern. Global
queries are posed by users and then manipulated so as to be executable at the
Data Source layer. The order of interactions follows the sequence of step required
to decompose and solve the query (Figure 9):

1. User Agents directly transmit the submitted global queries to the Rewriting
Agents

2. Rewriting Agents dialogue with Proxy Agents to retrieve information about
the Global and Local Schema and the mapping table

3. once the queries have been rewritten, Rewriting Agents send it to the Mapper
Agents

4. Mapper Agents decompose the global queries into a set of local queries
5. once set of local queries is available, Mapper Agents send it to the Planner

Agents



Fig. 6. The MIKS agents organised into a fully distributed configuration



Fig. 7. System initialisation

6. Planner Agents generate a query execution plan
7. together with the SA organises a group of Query Agents
8. Query Agents interact with Query Support Agents to actually execute the

queries at data source level
9. Query Agents keep the Planner Agents up-to-date, exception should arise

and modifications to the plan should be undertaken
10. Query Agents synthetise the global answer and send it to the User Agents.

These interaction patterns show how our MAS architecture provides for flex-
ibility and can adapt to dynamic environment. Although we have illustrated the
MIKS system as composed of two MASs, they have to be considered as open
system in that agents belonging to either MASs can engage in interactions with
all of the other agents. More in general, a system can comprise many MASs of
both kinds, building a complex information infrastructure, where many agents
interact in order to integrate and query different type of distributed sources and
ontologies.

6 Related Work

In the area of heterogeneous information integration, many projects based on
a mediator architecture have been developed. The mediator-based TSIMMIS



Fig. 8. A possible interaction pattern for the integration process

project [26] follows a ‘structural’ approach and uses a self-describing model
(OEM) to represent heterogeneous data sources, the MSL (Mediator Specifi-
cation Language) rule to enforce source integration and pattern matching tech-
niques to perform a predefined set of queries based on a query template. Differ-
ently from our integration approach proposal, in TSIMMIS only the predefined
queries may be executed and for each source modification a manually mediator
rules rewriting must be performed.

The GARLIC project [21] builds up on a complex wrapper architecture to
describe the local sources with an OO language (GDL), and on the definition of
Garlic Complex Objects to manually unify the local sources to define a global
schema.
The SIMS project [3] proposes to create a global schema definition by exploiting
the use of Description Logics (i.e., the LOOM language) for describing informa-
tion sources. The use of a global schema allows both GARLIC and SIMS projects
to support every possible user queries on the schema instead of a predefined sub-
set of them.
The Information Manifold system [47] provides a source independent and query
independent mediator. The input schema of Information Manifold is a set of
descriptions of the sources. Given a query, the system will create a plan for
answering the query using the underlying source descriptions. Algorithms to de-



Fig. 9. A possible interaction pattern for the query solving phase

cide the useful information sources and to generate the query plan have been
implemented. The integrated schema is defined mainly manually by the designer,
while in our approach it is tool-supported.
Infomaster [34] provides integrated access to multiple distributed heterogeneous
information sources giving the illusion of a centralized, homogeneous informa-
tion system. It is based on a global schema, completely modelled by the user,
and a core system that dynamically determines an efficient plan to answer the
user’s queries by using translation rules to harmonize possible heterogeneities
across the sources. The main difference of these project w.r.t. our approach is
the lack of a tool aid-support for the designer in the integration process.

As for the multi-agent system community, some work has been done in the
direction of integration systems. For its similarities with the MIKS system, a par-
ticular mention deserves the Infosleuth system. Infosleuth is a system designed
to actively gather information by performing diverse information management
activities. In [52] the Infosleuth’s agent-based architecture has been presented.
InfoSleuth agents enable a loose integration of technologies allowing: (1) extrac-
tion of semantic concepts from autonomous information sources; (2) registration
and integration of semantically annotated information from diverse sources; and
(3) temporal monitoring, information routing, and identification of trends ap-
pearing across sources in the information network.

While addressing to the same research area, the MIKS system and Infosleuth
system present slightly different features.



First of all, the scope of the two systems appears to be different. MIKS aims
at building ontologies related with the integration domain, and at providing a
unified view. Query are to be posed as global ones on the GVV. Infosleuth bases
its data analysis on given ontologies (rather than building them) and provides
visibility of data related only to the specified queries.

Secondly, MIKS is meant to provide a two step managing of data, i.e integra-
tion and if required also querying, while Infosleuth is devoted to directly query
an information source, once an ontology has been explicitly given by humans.

In fact, the integration process differs in that MIKS aims at building on-
tologies directly from the content of the data source, inferring the relationships
within the collection of concepts. Infosleuth seems to be more an ontology-driven
query engine. Ontologies can be directly provided by users or designers in order
to be used during the mapping process. Ontologies can be stored in some server
facility for further reuse.

Thirdly, MIKS is characterised by strong reasoning capabilities that are
meant to tackle the problem of semantic integration of concepts belonging to
multiple ontologies (i.e. how we can discover that two objects belonging to dif-
ferent schema refer to the same real-world concept).

Further, as a consequence of these differences, the agent architecture of the
two systems is quite different. Agents with common functionalities (translator
agents/query support agents and resource agents, user agents, query agents) are
still observable even though they reflect the two distinct approaches. One last
remark concerns the presence in Infosleuth of service agents (in particular broker
agents). The MIKS provide the same services in a centralised manner with the
SA.

Another experience is the RETSINA multi-agent infrastructure for in-context
information retrieval [60]. In particular the LARKS description language [61] is
defined to realize the agent matchmaking process (both at syntactic and semantic
level) by using several different filters: Context, Profile, Similarity, Signature and
Constraint matching.

References

1. Knoblock C. A. Ambite J.L. Flexible and scalable cost-based query planning in
mediators: A transformational approach. Artificial Intelligence, 118(1-2):115–161,
2000.

2. Y. Arens, C.Y. Chee, C. Hsu, and C. A. Knoblock. Retrieving and integrating
data from multiple information sources. International Journal of Intelligent and
Cooperative Information Systems, 2(2):127–158, 1993.

3. Y. Arens, C. A. Knoblock, and C. Hsu. Query processing in the sims information
mediator. Advanced Planning Technology, 1996.

4. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):323–364,
1986.

5. I. Benetti, D. Beneventano, S. Bergamaschi, A. Corni, F. Guerra, and G. Malvezzi.
Si-designer: a tool for intelligent integration of information. Int. Conference on
System Sciences (HICSS2001), 2001.



6. D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti, G. Malvezzi,
M. Melchiori, and M. Vincini. Information integration: The momis project demon-
stration. In VLDB 2000, Proc. of 26th International Conference on Very Large
Data Bases, 2000, Egypt, 2000.

7. D. Beneventano, S. Bergamaschi, A. Garuti, C. Sartori, and M. Vincini. ODB-
QOptimizer: un Ottimizzatore Semantico di interrogazioni per OODB. In Terzo
Convegno Nazionale su Sistemi Evoluti per Basi di Dati - SEBD95, Salerno, 1996.

8. D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The momis ap-
proach to information integration. In Conference on Enterprise Information Sys-
tems (ICEIS01), Setbal, Portugal, 2001.

9. D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Consistency checking in
complex object database schemata with integrity constraints. IEEE Transactions
on Knowledge and Data Engineering, 10:576–598, July/August 1998.

10. D. Beneventano, S. Bergamaschi, and F. Mandreoli. Extensional Knowledge for
semantic query optimization in a mediator based system. In Proc. of FMII, 2001.

11. D. Beneventano, S. Bergamaschi, and C. Sartori. Semantic query optimization
by subsumption in OODB. In Flexible Query Answering Systems, volume 62 of
Datalogiske Skrifter - ISSN 0109-9799, Roskilde, Denmark, 1996.

12. D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. ODB-QOPTIMIZER:
A tool for semantic query optimization in oodb. In Int. Conference on Data En-
gineering - ICDE97, 1997. http://sparc20.dsi.unimo.it.

13. D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. Odb qoptimizer: a
tool for semantic query optimization in oodb. In Fifth Conference of the Italian
Association for Artificial Intelligence (AI*IA97), Rome 1997, LNAI 1321, 1997.

14. S. Bergamaschi, G. Cabri, F. Guerra, L. Leonardi, M. Vincini, and F. Zambonelli.
Supporting information integration with autonomous agents. In CIA, pages 88–99,
2001.

15. S. Bergamaschi, G. Cabri, F. Guerra, L. Leonardi, M. Vincini, and F. Zambonelli.
Exploiting agents to support information integration. International Journal on
Cooperative Information Systems, 11(3), 2002.

16. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration
of heterogenous information sources. Journal of Data and Knowledge Engineering,
36(3):215–249, 2001.

17. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Records, 28(1), March 1999.

18. S. Bergamaschi and B. Nebel. Acquisition and validation of complex object
database schemata supporting multiple inheritance. Journal of Applied Intelli-
gence, 4:185–203, 1994.

19. J. (eds.) Bradshaw. Handbook of Agent Technology. AAAI/MIT Press, 2000.

20. G. Cabri, L. Leonardi, and F. Zambonelli. Agents for information retrieval: Issues
of mobility and coordination. Journal of Systems Architecture, 46(15):1419–1433,
2000.

21. M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R. Fagin, M. Flickner,
A.W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J.H. Williams, and E.L.
Wimmers. Object exchange across heterogeneous information sources. Technical
report, Stanford University, 1994.

22. S. Castano and V. De Antonellis. Deriving global conceptual views from multiple
information sources. In preProc. of ER’97 Preconference Symposium on Conceptual
Modeling, Historical Perspectives and Future Directions, 1997.



23. S. Castano, V. De Antonellis, and S. De Capitani Di Vimercati. Global view-
ing of heterogeneous data sources. IEEE Transactions on Knowledge and Data
Engineering, 13(2):277–297, 2001.

24. R. G. G. Cattell, editor. The Object Database Standard: ODMG93. Morgan Kauf-
mann Publishers, San Mateo, CA, 1994.

25. C.-C. K. Chang and H. Garcia-Molina. Mind Your Vocabulary: Query Mapping
Across Heterogeneous Information Sources. In Proc. of ACM SIGMOD, pages
335–346, 1999.

26. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakostantinou,
J.Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous in-
formation sources. In IPSJ Conference, Tokyo, Japan, 1994. ftp://db.stanford.edu
/pub/chawathe/1994/ tsimmis-overview.ps.

27. S. S. Chawathe, H. Garcia-Molina, and J. Widom. A toolkit for constraint man-
agement in heterogeneous information systems. In ICDE, pages 56–65, 1996.

28. World Wide Web Consortium. Standards for the world wide web. Technical report,
www.w3c.org.

29. C. Sartori D. Beneventano, S. Bergamaschi and M. Vincini. Odbtools: A descrip-
tion logics based tool for schema validation and semantic query optimization in
object oriented databases. In Conf. on Data Engineering, ICDE’97, Birmingham,
UK, 1997.

30. O. M. Duschka and M. R. Genesereth. Answering recursive queries using views.
In Proc. of the Sixteenth ACM SIGMOD Symposium on Principles of Database
Systems, 1997.

31. Oliver M. Duschka. Query optimization using local completeness. In AAAI/IAAI,
pages 249–255, 1997.

32. S. Gnanaprakasam E. Lambrecht, S. Kambhampati. Optimizing recursive
information-gathering plans. In Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI 99, 1999.

33. FIPA. Specifications, 97.
34. M. R. Genesereth, A. M. Keller, and O. Duschka. Infomaster: An information

integration system. In Proc. of ACM SIGMOD, 1997.
35. Object Management Group. CORBA: Architecture and Specification. August 1995.
36. A. Gupta and J. Widom. Local verification of global integrity constraints in dis-

tributed databases. In Proc. of ACM SIGMOD, pages 49–58, 1993.
37. L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries across

diverse data sources. In Proc. of VLDB, pages 276–285, 1997.
38. R. Hull and R. King et al. Arpa i3 reference architecture, 1995. Available at

http://www.isse.gmu.edu/I3 Arch/index.html.
39. N. R. Jennings and M. J. Wooldridge. Applications of intelligent agents. In

Nicholas R. Jennings and Michael J. Wooldridge, editors, Agent Technology: Foun-
dations, Applications, and Markets, pages 3–28. Springer-Verlag: Heidelberg, Ger-
many, 1998.

40. C.A. Knoblock J.L. Ambite. Flexible and scalable query planning in distributed
and heterogeneous environments. In Proc. of the 4th Int. Conf. on Artificial Intel-
ligence Planning Systems. AAAI, 1998.

41. N. M. Karnik and A. R. Tripathi. Design issues in mobile-agent programming
systems. IEEE Concurrency, 6(3):52–61, 1998.

42. W. Kim and F.H. Lochoisky. Object-Oriented concepts, Databases, and Applica-
tions. ACM Press. Addison-Wesley Publishing Co., New York, NY, USA, 1989.

43. M. Klusch. Information agent technology for the internet: A survey. Data and
Knowledge Engineering, 36(3):337–372, 2001.



44. C.A. Knoblock. Planning, executing, sensing, and replanning for information gath-
ering. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, 1995.

45. Telecom Lab. Jade - java agent development environment.
46. U. Leser. Query planning in Mediator Based Informaiton Systems. PhD thesis,

TU Berlin, September 2000.
47. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information

sources using source descriptions. In Proc. of VLDB, pages 251–262, 1996.
48. S. E. Madnick. From vldb to vmldb (very many large data bases): Dealing with

large-scale semantic heterogenity. In VLDB, pages 11–16, 1995.
49. Sun Microsystem. Java applet. http://java.sun.com/applets/.
50. Sun Microsystem. Java official web-site. Technical report, www.java.sun.com.
51. Sun Microsystem. Java servlet. http://java.sun.com/servlets/.
52. M. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh. Active infor-

maiton gathering in infosleuth. International Journal of Cooperative Information
Systems, 9(1-2):3–27, 2000.

53. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in me-
diator systems. In VLDB Int. Conf., Bombay, India, September 1996.

54. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across
heterogeneous information sources. In P. S. Yu and A. L. P. Chen, editors, 11th
Conference on Data Engineering, pages 251–260, Taipei, Taiwan, 1995. IEEE Com-
puter Society.

55. S. Papastavrou, G. Samaras, and E. Pitoura. Mobile agents for WWW distributed
database access. In ICDE, pages 228–237, 1999.

56. R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries us-
ing views. In VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 484–495. Morgan
Kaufmann, 2000.

57. M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap it! A wrapper architecture
for legacy data sources. In Proc. of VLDB, pages 266–275, 1997.

58. M. Ozsoyoglu S. Shenoy. Design and implementation of a semantic query optimizer.
IEEE trans. Data and Knowledge Engineering, 1(3):344–361, 1989.

59. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
60. K. Sycara. In-context information management truough adaptative collaboration

of intelligent agents. Intelligent Information Agents, pages 78–99, 1999.
61. K. P. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking

among agents in open information environments. SIGMOD Record, 28(1):47–53,
1999.

62. M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2002.
63. R. Yerneni, Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Fusion

queries over internet databases. In Advances in Database Technology - EDBT’98,
6th International Conference on Extending Database Technology, volume 1377 of
Lecture Notes in Computer Science, 1998.


