

 218 Int. J. Web Engineering and Technology, Vol. 1, No. 2, 2004

 Copyright © 2004 Inderscience Enterprises Ltd.

SOAP-enabled web services for knowledge
management

I. Benetti*, F. Guerra, M. Vincini and
S. Bergamaschi
Dipartimento di Ingegneria dell’Informazione,
Università di Modena e Reggio Emilia, Via Vignolese 905,
41100 Modena, Italia
E-mail: benetti.ilario@unimo.it E-mail: guerra.francesco@unimo.it
E-mail: vincini.maurizio@unimo.it
E-mail: bergamaschi.sonia@unimo.it
*Corresponding author

Abstract: The widespread diffusion of the World Wide Web among
medium/small companies yields a huge amount of information to make
business available online. Nevertheless the heterogeneity of that information,
forces even trading partners involved in the same business process to face daily
interoperability issues.

The challenge is the integration of distributed business processes, which, in
turn, means integration of heterogeneous data coming from distributed sources.

This paper presents the new web services-based architecture of the MOMIS
(Mediator envirOnment for Multiple Information Sources) framework that
enhances the semantic integration features of MOMIS, leveraging new
technologies such as XML web services and the SOAP protocol.

The new architecture decouples the different MOMIS modules, publishing
them as XML web services. Since the SOAP protocol used to access XML web
services requires the same network security settings as a normal internet
browser, companies are enabled to share knowledge without softening their
protection strategies.

Keywords: web-services; e-commerce; information integration; ontology.

Reference to this paper should be made as follows: Benetti, I., Guerra, F.,
Vincini, M. and Bergamaschi, S. (2004) ‘SOAP-enabled web services for
knowledge management’, Int. J. Web Engineering and Technology, Vol. 1,
No. 2, pp.218–235.

Biographical notes: Ilario Benetti is a software consultant. His research
interests include information integration from heterogeneous data sources,
especially e-commerce applications. He received a PhD in computer science
and engineering at the University of Modena e Reggio Emilia.

Sonia Bergamaschi is a Full Professor of Databases at the Dipartimento di
Ingegneria dell’Informazione, Università di Modena e Reggio Emilia. Her
research interests include intelligent integration of information, knowledge
representation and management in the context of very large databases that face
theoretical and implementation problems. She is a member of the IEEE
Computer Society and the ACM and is the coordinator of the EU IST
SEWASIE Project (semantic webs and agents in integrated economies).

 SOAP-enabled web services for knowledge management 219

Francesco Guerra is a PhD candidate in information engineering at the
Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio
Emilia. His research interests include integration of heterogeneous information
sources, ontologies and semantic web. He received a Laurea in computer
engineering from the Università di Modena e Reggio Emilia.

Maurizio Vincini is a Research Associate in information engineering at the
Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio
Emilia. His research interests include the intelligent integration of information
systems based on reasoning techniques, ontologies and mediator information
software agents, object oriented database design and query optimisation. He
received a PhD in computer science and engineering from the Università di
Modena e Reggio Emilia.

1 Introduction

The widespread diffusion of the World Wide Web has not only reached big companies,
but also small and medium businesses, yielding a huge amount of information available
online. Nevertheless the heterogeneity of that information, forces even trading partners to
face daily, interoperability issues.

The heterogeneity of networked information may bring both semantic conflicts
(when companies use different terms to refer to the same concept) and structural
incompatibilities (when different data representation models are adopted).

It is important to underline that existing standards could be not sufficient to achieve a
complete interoperability if the legacy systems or the involved enterprise resources
planning software have been released long before the introduction of those standards.
Under these conditions, as well as when a common standard cannot be established, the
integration of heterogeneous systems appears to be the only chance.

The challenge is the integration of distributed business processes, which, in turn,
means integration of heterogeneous data coming from distributed sources. For small and
medium companies, with reduced investments in information technology, it is extremely
important to overcome the lack of a common ontology between business partners without
modifying either the internal data storage system or the network infrastructure.

Integration has become more and more relevant inside the business application
developers’ community, since a new class of applications, called EAI (enterprise
application integration), has been recently introduced.

In general, three ways to address conflicts between heterogeneous applications can be
individuated:

• completely rewriting existing applications: it is a costly solution and it could be
compromised by the evolution of standards

• abandoning the integration projects, thus renouncing the possibilities offered by
interoperable applications such as the business processes automation

• adopting integration software, which in a relatively short time and with small
changes to the existing systems allows a connection to be established between
existing and newer applications.

 220 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

Each of the proposed solutions offers advantages and disadvantages. The integration
currently appears to be the most promising. Integration is flexible, since it allows users to
add or remove elements at any time and scale, as it can be performed in an incremental
way.

The opportunity of connecting existing systems relies on the availability of software
designed to automate the integration process as much as possible. Software of this kind,
usually referred to as middleware, acts as an interpreter between different IT systems.

With this in mind, we developed the MOMIS system (Mediator envirOnment for
Multiple Information Sources) [1-3]. MOMIS is a mediator-based system for information
extraction and integration that works with structured and semi-structured data sources.
The MOMIS system obtains the semantic integration by creating a thesaurus of
terminological relationships holding both at intra-source and inter-source level. At this
stage MOMIS exploits both inference techniques and the WordNet lexical system and it
creates a global virtual view of all the sources in the integration domain evaluating
affinities among concepts in the thesaurus. Software modules that communicate using the
CORBA standard compose the system.

As companies connect to the internet, the awareness of the risks of a permanent
connection increases significantly. In turn, information sharing frequently involves
policies: firewalls, proxy servers and encryption algorithms that ensure a reasonable level
of security for both data and network connectivity.

In this paper we propose a new web service-based architecture in order to enhance the
semantic integration features of the MOMIS, leveraging new technologies such as XML
web services and SOAP (simple object access protocol) [4,5].

The semantic integration carried out by MOMIS does not affect the structure of the
sources to be integrated. The new architecture decouples the different modules of
MOMIS, publishing them as XML web services. Enabling XML web services within the
original MOMIS architecture [6] means, on the one hand, exploiting the benefits brought
by real platform independence, low overhead service integration and, on the other hand,
splitting the integration process over powerful distributed software modules. Since the
SOAP protocol used to access XML web services requires the same network security
settings as a normal internet browser, companies are enabled to share knowledge without
softening their protection strategies, hence the business processes integration becomes a
cost-effective task.

The paper is organised as follows. Section 2 introduces some of the concepts on
which web services are based; Section 3 describes how web service-based architecture
improves our integration system; Section 4 shows a running example, and finally
Section 5 offers some concluding remarks.

2 Web services at a glance

It is a largely widespread opinion that web services will be the fundamental building
blocks in the move to distributed computing on the internet. In fact, enterprises are
moving their existing applications to the web and consequently a complete infrastructure
to manage the specific issue introduced by the open platform is needed [7].

Several definitions of web services are been provided. In our opinion, a web service
may be thought of as a self-contained, modular application that can be described,

 SOAP-enabled web services for knowledge management 221

published, located and invoked over a network, generally, the World Wide Web.
Essentially web service architecture may describe three roles [4,8]:

• Service provider: from a business perspective, this is the owner of the service. From
an architectural perspective, this is the platform that hosts access to the service.

• Service requestor: from a business perspective, this is the business that requires
certain functions to be satisfied. From an architectural perspective, this is the
application that is looking for and invoking or initiating an interaction with a service.
The service requestor role can be played by a browser driven by a person or a
program without a user interface, for example another web service.

• Service registry: this is a searchable registry where service providers publish their
service descriptions. Service requestors find services and obtain binding information
(in the service descriptions) for services during development for static binding or
during execution for dynamic binding. For statically bound service requestors, the
service registry is an optional role in the architecture, because a service provider can
send the description directly to service requestors. Likewise, service requestors can
obtain a service description from other sources besides a service registry, such as a
local file, FTP site, website, advertisement and discovery of services (ADS) or
discovery of web services (DISCO).

Existing applications can be integrated more rapidly, easily and less expensively, since
web services reduce what is absolutely required for interoperability to the minimum.
Integration occurs at a higher level in the protocol stack, based on messages centred more
on service semantics and less on network protocol semantics, thus enabling real platform
and language independence. These characteristics are ideal for connecting business
functions across the web both between enterprises and within enterprises. They provide a
unifying programming model so that application integration inside and outside the
enterprise can be done with a common approach, leveraging a common infrastructure.
The integration and application of web services can be done in an incremental manner, by
using existing languages and platforms and by adopting existing legacy applications.

Previous platforms and architectures relying on distributed computing (CORBA,
DCOM, Java RMI) have yielded systems where the coupling between various
components is too tight to be effective for low overhead, every time and everywhere B2B
applications over the internet. These approaches require too much agreement and shared
context among business systems from different organisations to be reliable for open,
e-business cross-platform.

2.1 The SOAP approach

SOAP is a lightweight protocol for exchange of information in a decentralised,
distributed environment. It is an XML-based protocol that consists of three parts: an
envelope that defines a framework for describing what is in a message and how to
process it, a set of serialising rules for expressing instances of application-defined data
types and a convention for representing remote procedure calls and responses.

All SOAP messages are encoded using XML. A major design goal for SOAP is
simplicity and extensibility. This means that there are several features from traditional
messaging systems and distributed object systems that are not part of the core SOAP

 222 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

specification. SOAP defines a message-processing model but does not itself define any
application semantics, such as a programming model or implementation-specific
semantics.

The SOAP specification also defines the relationships between HTTP messages and
SOAP. This HTTP binding is important because HTTP is supported by almost all modern
operating systems. The HTTP binding is optional, but almost all SOAP implementations
support it. The HTTP transport binding for SOAP makes it attractive for industrial uses.
Since most organisations are familiar with HTTP and already have it incorporated into
their network infrastructure, SOAP fits right in without the complex changes to the
network or firewalls that many other protocols require.

One of the most relevant uses of SOAP is to enable XML web services. An XML
web service is a function that is exposed through a SOAP interface so that other
SOAP-based applications on the web can call it to access the service.

WSDL (web services description language) [9] is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. As communications protocols and
message formats are standardised in the web community, it becomes increasingly
possible and important to be able to describe the communications in some structured way.
WSDL addresses this need by defining an XML grammar for describing network services
as collections of communication endpoints capable of exchanging messages. WSDL
service definitions provide documentation for distributed systems and serve as a recipe
for automating the details involved in applications communication. A WSDL file is an
XML document that describes a set of SOAP messages and how the messages are
exchanged. Since WSDL is XML, it is readable and editable, but in most cases, it is
generated and consumed by software. SOAP introduces the following advantages with
regard to the communication mechanism used by the CORBA architecture:

• While IIOP, ORPC, are binary protocols, SOAP is a text-based protocol. Using
XML for data encoding gives SOAP some unique capabilities. For example, due to
the readability of an XML file, it is much easier to debug applications based on
SOAP than on a binary stream. Vice-versa, the SOAP protocol it is not optimised to
transfer huge data sources.

• Due to the communications among the different SOAP machines uses the HTTP
protocol, no further configurations are needed in order to overcome firewalls and
others protections.

• Because it is based on a vendor-agnostic technology, namely XML, HTTP and
simple mail transfer potocol (SMTP), SOAP appeals to all vendors.

3 The MOMIS system

3.1 Semantic integration of heterogeneous data sources

The MOMIS system is a framework for integration and querying of distributed and
heterogeneous data sources. MOMIS exploits the semantics expressed by the conceptual
schemata, or metadata, of the data sources to be integrated, to create a global virtual view
of all the sources. The MOMIS system allows the external applications to perform

 SOAP-enabled web services for knowledge management 223

queries directly to the integrated global schema. The system, originally based on an I3
architecture [9], consists of the three functional elements: a common data model, one data
wrapper for each data source involved by the integration, and a mediator.

For a semantically rich representation of source schemas and object patterns, MOMIS
uses an object-oriented language called ODLI3. ODLI3. is close to the ODL language and
can be used to describe heterogeneous schemas of structured and semi-structured data
sources. ODLI3 extends ODMG-ODL with intentional and extensional relationships
expressing intra-schema and inter-schema knowledge for the source schemas. In
particular ODLI3 extends ODL with the following relationships:

• syn (synonym of) is a relationship defined between two terms ti and tj (where ti �
tj) that are synonyms in every involved source

• bt (broader terms) is a relationship defined between two terms ti and tj, where ti has a
broader, more general meaning than tj. bt relationships are not symmetric. The
opposite of bt is nt (narrower terms)

• rt (related terms) is a relationship defined between two terms ti and tj that are
generally used together in the same context in the considered sources.

The data wrappers run over the data sources to be integrated to translate the conceptual
schema of each source into a common ODLI3 format. Therefore, the wrappers are
responsible for translating the queries over the global virtual view into queries expressed
in a language compliant with those of the sources and for exporting the results to the
mediator.

Finally, the mediator consists of two modules: the global schema builder and the
query manager. The global schema builder processes and integrates ODLI3 descriptions
received from the wrappers to create the global virtual view. To accomplish this, the
mediator combines the reasoning capabilities of the description logics with affinity-based
clustering techniques [6]. The query manager module performs query processing and
optimisation. The user’s applications interact with MOMIS by querying the global view
using the ODLI3 language, which is a subset of OQL-ODMG. The query manager assists
this phase by generating the OQLI3 queries for the wrappers. Using mapping-description
techniques, the query manager generates the queries automatically by formulating and
optimising the generic OQLI3

 queries into different sub queries, one for each involved
data source and synthesises a unified global result.

The original contribution of MOMIS is related to the availability of a set of
techniques for the designer to face common problems that arise when integrating
pre-existing information sources, containing both semi-structured and structured data.
MOMIS provides the capability of explicitly introducing many kinds of knowledge for
integration, such as integrity constraints, intra-source and inter-source intensional and
extensional relationships and designer supplied domain knowledge. A common
thesaurus, which has the role of a shared ontology of the source, is built in a
semi-automatic way. The common thesaurus is a set of intra-schema and inter-schema
intensional and extensional relationships, describing inter-schema knowledge about
classes and attributes of sources’ schemas; it provides a reference on which to base the
identification of classes, candidate to integration and subsequent derivation of their global
representation.

 224 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

MOMIS supports information integration in the creation of an integrated view of all
sources (global virtual view) in a way that is automated as much as possible and performs
revision and validation of the various kinds of knowledge used for the integration. To this
end, MOMIS combines reasoning capabilities of description logics with affinity-based
clustering techniques, by exploiting a common ontology for the sources constructed using
lexical knowledge from WordNet and validated integration knowledge.

The global virtual view is expressed by using XML standard, to guarantee the
interoperability with another open integration system prototype. The aforementioned
functionalities of the MOMIS system are also available with web-interface [6].

3.2 The integration process

The MOMIS framework consists of semiautomatic and distributed software tools, which
require an integration domain expert (the integration designer), to revise the results
automatically computed by the mediator and even to add new knowledge, refining the
global virtual view.

An incremental process provides the global schema. The first step is the creation of a
thesaurus of lexical relationships. MOMIS extracts the relationships within a single local
schema (intra-schema) by using inference techniques. Then, an ontology shared by the
different local schemas (inter-schema relationships) is built by using the WordNet system
[10], which identifies lexical relationships between inter-schema concepts on the basis of
their meaning. At this stage, the correct meaning for each significant term within the local
schemas has to be indicated, choosing from those suggested by the WordNet lexical
system. This task is called annotation. The annotation can be performed at each single
wrapper (local annotation) or at mediator level (centralised annotation). The annotation
process in conjunction with WordNet properties (synonymy, polysemy, hypernymy,
olonomy, correlation) allows the MOMIS system to define new lexicon/terminological
relationships among the ODLI3 classes and attributes.

Both the inter-schema and the intra-schema relationships are stored in the shared
ontology, which, in turn, is defined common thesaurus and validated by the mediator.
The integration designer is allowed to insert new intensional or extensional relationships
into the common thesaurus to capture specific knowledge about the integration
domain. The designer can delete insignificant inferred relationships as well. Finally,
inference capabilities of ODB-tools [11] are exploited to obtain a new set of
structural/terminological relationships by using subsumption, (i.e. generalisation) and
equivalence computation.

MOMIS uses relationships in the common thesaurus to evaluate the level of affinity
between objects both at intra-schema and inter-schema level. The concept of affinity is
introduced to formalise the kinds of relationship that can occur between objects. MOMIS
groups together in the same cluster classes having affinity in different sources, by using
hierarchical clustering techniques. The goal is to identify the classes that will form the
global schema: for each cluster in the tree, a global class representative of the classes
contained in the cluster is defined via interactive process with the designer. First MOMIS
associates to the global class a set of global attributes corresponding to the union of the
attributes of the classes belonging to the cluster, where the attributes are automatically
unified into a unique global attribute by exploiting terminological relationships. In short,
we can say that the global attributes are obtained in two steps:

 SOAP-enabled web services for knowledge management 225

• union of the attributes of all the classes belonging to the cluster

• fusion of the ‘similar’ attributes; in this step redundancies are eliminated in
a semi-automatic way taking into account the relationships stored in the
common thesaurus.

To complete global class definition, information on local/global attribute mappings and
default values is provided by the designer in the form of declarative mapping rules. For
each global class a persistent mapping table, storing all the intensional mappings is
generated; it is a table whose columns represent the set of the local classes, which belong
to the cluster and whose rows represent the global attributes.

An element MT[L][ag] represents how the global attribute ag is mapped into the local
class L. Each element MT[L][ag] of the table is a mapping function of the values
assumed by the set of attributes MT[L][ag]. Some simple and frequent cases of this
mapping function are:

• MT[L][ag] = al: the global attribute ag maps into the al local attribute

• MT[L][ag] = al1 and al2 and aln: this is used when the value of the ag attribute is the
concatenation of the values assumed by a set of attributes ali belonging to the same
local class L

• MT[L][ag] = case of al const1: al1, …constn: aln: this situation occurs when
the ag global attribute can assume one value in a set of ali belonging to the same
local class L and the value choice depends on a third attribute, al, from the same
class, which act as a selector

• MT[L][ag] = const: in this case a global attribute value does not refer to any local
attribute and a constant value is set by the designer (see the Rank attribute)

• MT[L][ag] = null: in this case no attribute of the class L corresponds to the global
attribute ag

The global schema consists of all the classes derived from clusters and it is the basis for
submitting queries against the sources.

3.3 Software at work

MOMIS is developed as a distributed system, where each node represents a local data
source to be integrated and the nodes are connected to the mediator that is a central point
to information access for the final user.

Each node is encapsulated into a wrapper conceived as a web services provider to
make available machine-processable information for the mediator, while the mediator
also provides a web service for the wrapper.

The web services are implemented by following SOAP protocol, so that the MOMIS
architecture consists of information interchange between the mediator and the wrapper by
SOAP Client/Server platform (see Figure 1).

 226 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

Figure 1 MOMIS architecture

Each wrapper makes the ODLI3 data description of its underlying source available, by
exposing as SOAP Server the appropriate method (getDescription), which returns the
ODLI3 schema as XML string. A running wrapper performs this translation in unattended
mode, always making the information available. At present relational, object oriented,
XML data source formats are supported. In addition, the wrapper permits the WordNet
annotation directly at local source, by the interaction with the Wordnet dictionary
accessed as a web service exposed by the mediator

For a local annotation, the wrapper must provide a SOAP client to invoke those
methods and, in turn, to find out the meanings within the WordNet’s lexicon. Unlike the
translation into ODLI3, the annotation is a user driven task. When the local annotation has
been accomplished, the user issues the annotated schema. The information becomes
available through the getAnnotatedDescription method, which joins the terms of the
ODLI3 description with the address of their meanings within the WordNet database.

The mediator will then evaluate the lexical relationships that hold between the
returned WordNet terms and insert them into the common thesaurus.

3.4 The role of XML web services

Enabling XML web services within the original MOMIS architecture means, on the one
hand, extending the MOMIS capabilities through the benefits brought by real platform
independence, low overhead service integration and, on the other hand, it causes a
significant improvement of the capabilities of the integration process.

“Moreover, this extended architecture decouples costs of the common thesaurus
generation task”

The WDS acts on a single data source. Once the wrapper has generated the ODLI3
description of the local schema, the WDS uses the SOAP client located on the wrapper
associated with the data source to access the WordNet web service running at mediator
level. The WordNet web service allows the WDS to perform a precise annotation of the
local schema by assigning the correct WordNet meaning to each term within the local
schema. The WDS differs from the very integration designer since he is supposed to

 SOAP-enabled web services for knowledge management 227

supply a detailed knowledge about a specific data source rather than a global experience
about the whole integration domain.

The common thesaurus generation starts after each local schema description has been
translated into ODLI3 and, if possible, annotated by the WDS.

One of the most relevant advantages coming from the introduction of the WDS is
releasing the integration designer from annotating each local schema. The uniqueness of
the WordNet database, in addition, prevents ambiguity even in the presence of many data
sources, (i.e. many different WDSs). The generation of the common thesaurus becomes a
more rapid task since the integration designer deal with annotated sources.

Another major advantage becomes valuable in the presence of non-meaningful terms
within the local schema. In theses cases the direct experience of a WDS is fundamental to
the correct conversion of abbreviations, acronyms and conventional words into
meaningful terms. Furthermore, if a local schema is expressed in a language other than
English, a local specialist may be more precise in the translation of the terms from their
original language into English than the integrator designer. Notice that the translation
would be required since the WordNet morphological processor assumes that all words are
expressed in English.

The wrappers, within a web services-based architecture, are service providers
exposing both the ODLI3 description and the annotation of the local schema. Nevertheless
the wrapper must include a SOAP compliant module acting as a web services requestor in
order to access the WordNet web service and to provide the annotation of the local
schema. A graphical user interface is also required to allow the WDS to easily browse the
meanings available in WordNet and to assign them to the terms of the local schema.

A generic wrapper becomes a more complex software with respect to the wrappers
described in the earlier MOMIS versions. The introduction of the web services within the
original I3 architecture involves a trade-off between the complexity and the versatility of
the wrappers with reference to optional implementation of a SOAP client module for the
local annotation of the schema. The more complex the wrapper application, the wider the
contribution to the whole integration process.

A lightweight wrapper designed to convert the local schema into the ODLI3 format
and to publish it as a web service, would be perfectly compliant with the rest of the
system. It would be a straightforward solution, (considering the variety of web services
publishing tools available) well tailored for meaningful data source.

4 Running example

Let us introduce the following example to illustrate both the integration process and the
exploitation of the new architecture. Let us suppose that an industrial group had to run
financial statistics about two controlled companies called CompA and CompB. CompA
evaluates its financial performances by directly accessing the information about the
invoices of a given year. This information is stored in a relational database. CompB
creates an XML file, year by year, with data that could be useful in evaluating statistics.

This over-simplified example aims to illustrate the benefits coming from the
exploitation of the distributed knowledge provided by the WDS rather than a complex
integration scenario. The proposed integration domain requires a wrapper for relational
databases and another one for XML sources. As the CompB file includes only

 228 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

meaningful terms, a wrapper’s domain specialist is not required for the local schema
annotation. Therefore, a simple ODLI3 parser for XML source files would be the
recommended wrapper for the CompB source. The CompA database’s schema holds
plenty of acronyms and conventional words. Thus, only a local expert would be able to
explain the meaning of each term, or, in other words, to annotate the local schema. A
local annotation is typically very effective under those conditions. Therefore, let us focus
on the CompA wrapper.

The considered wrapper basically performs two steps. First it establishes a connection
to CompA’s schema and builds the corresponding ODLI33 description on the basis of a
fixed set of translation rules. The translated schema is stored in an environment variable
of the wrapper, as an XML string. This value remains unchanged unless the wrapper is
stopped and restarted.

When the mediator retrieves the ODLI3 schema through the getDescription web
method, the web services inside the wrapper has only to read the environment variable
and to assign it as return value of the method.

Table 1

CompA’s database CompB’s XML schema

DOCH (ID, DT, DD, CID)
DOCR (DID,RD,IID,Q)
ITM (ID, DSC, PR, UM)
CST(ID, NM, USA)

<?xml version=“1.0” encoding=“utf-8”?>

<xs:schema targetNamespace=http://tempuri.org/fnSchema.xsd

xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:complexType name=“InvoiceStat”>

<xs:sequence>

<xs:element name=“ItemID” type=“xs: integer “/>

<xs:element name=“ItemDesc” type=“xs: string “/>

<xs:element name=“CustomerID” type=“xs: integer “/>

<xs:element name=“CustName” type=“xs: string “/>

<xs:element name=“Date” type=“xs: date “/>

<xs:element name=“Price” type=“xs:float”/>

<xs:element name=“Quantity” type=“xs:float”/>

<xs:element name=“UnitMeas” type=“xs:float”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

The second main purpose of the wrapper is to support the local annotation. To enable a
local expert (WDS) to locally annotate the schema, the wrapper links up with the
WordNet dictionary which is only stored at mediator level.

The annotation includes two steps: the base form choice and the meaning choice. The
former requires the WDS to select the word form, (i.e. the way in which the word is
written) from the list of suitable base forms supplied by the WordNet morphologic
processor. This is accomplished by invoking the checkWord web method on the
mediator, which returns an acknowledgment only if the word, has been found within
WordNet. If a base form is not found (as we could expect in the CompA case) the WDS

 SOAP-enabled web services for knowledge management 229

can directly introduce it. In our example, the ‘customer’ base form would replace the
CST term. Likewise, the WDS introduces meaningful base forms for each term of the
local schema.

Figure 2 illustrates the ODLI3 format for the CST class, once the correct forms have
been selected by the WDS. The latter is the meaning choice. The designer can relate a
name to one, more than one, or no meaning. The choice of not relating a name to any
meaning can be made for different reasons: the concept is too complex and it cannot be
expressed with one word; it belongs to the tops, i.e. to generic concepts.

The meanings are retrieved by invoking the getSense web method, exposed by the
mediator. When called for a base form, the function puts into a bi-dimensional array of
values all the meanings associated to the form and the corresponding logical address
within the WordNet’s data files. The WDS is then allowed to choose on or more
meanings. The wrapper stores, for each base form in the local schema, only the logical
address of the meaning indicated by the WDS. In the case of CompA, the WDS
associates the first meaning to the name attribute of the customer class: it turns the
wrapper, keep the value corresponding logical address in the running version of WordNet
(in this case 12548).

Figure 2 The CompB’s XML schema

Interface customer {

Attribute integer code;

Attribute string name;

Attribute string address;

}

At the end of the annotation, the WDS is required to save his choices and to issue the
schema. From this point on, the mediator is allowed to invoke the
getAnnotatedDescription on the wrapper to exploit the local annotation. Notice that any
semantic ambiguity between concepts among different schemas will be removed by the
annotation since a third party-supplied morphology, (i.e. the WordNet dictionary) is
trustfully shared by each source.

The starting point of the exploited lexical semantics derives from the existence of a
conventional association between the words form and the concept/meaning they express;
such association is of the many-to-many kind and gives rise to the following properties:

• synonymy: property of a concept/meaning which can be expressed with two or more
words

• polysemy: property of a single word having two or more meanings.

As the WDS selects one or more meanings from those found in WordNet, starting from
the chosen base form, all the words that are related to the same name, share the same base
form.

 230 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

For example, all the 15 meanings that WordNet relates to the [name] base form are
obtained. Selecting them all, i.e. considering 15 words for the [cutomer.name] attribute,
we could obtain ‘wrong’ results, which are not suitable within the examined context.

That is the WDS experience becomes fundamental to making the correct choice. The
annotation activity could be significantly long in terms of time, even for the WDS. The
semi-automatic approach supplied by the wrapper reduces the complexity of the task, in
fact, a ‘difficult’ problem, (i.e. finding the relations between all words), is divided into
many ‘easy’ ones, choosing the meaning of each terms from a list.

Furthermore the wrapper provides a graphical representation of the generalisation
hierarchy of the meanings in order to help the WDS in the most difficult choices (see
Figue 3 for the [name] base form).

Figure 3 The [name] hypernym tree

Once the mediator has gathered the local schemas, the common thesaurus generation
starts. Lexical relationships are extracted in the following order:

• Schema-derived relationships: extracted by analysing each ODLI3 schema separately.
In particular, intra-schema relationships are extracted when an attribute of a class
refers to another belonging to a different class in the same source.

 CompA.DOCR RT CompA.DOCH
 CompA.CST RT CompA.DOCH
 CompA.ITM RT CompA.DOCR

 SOAP-enabled web services for knowledge management 231

• Lexicon derived relationship: extracted exploiting the lexical relationships existing
between terms in WordNet. If annotated schemas are gathered from the wrappers
(see CompA case) the mediator has only to run the extraction algorithm. Otherwise
(see CompB source in our example) the integration designer must first annotate the
local schema and then extract the relationships.

 CompB.Invoice_Stat NT CompA.DOCH → (Invoice NT Document)
 CompA.DOCR NT CompA.DOCH → (line NT head)
 CompB.Invoice_Stat.Date SYN CompA.DOCH.Date
• Inferred relationships: holding at intra-schema level, are inferred by exploiting

inference capabilities of a description logics-based component called ODB-Tools.

 CompA.CST RT CompB.Invoice_Stat
 CompA.ITM RT CompB.Invoice_Stat

All these relationships are added to the Common Thesaurus and thus considered in the
subsequent phase of construction of Global Schema. Figure 4 shows the global classes
obtained for the considered integration domain.

Figure 4 The global classes

The mapping table in Figure 5 illustrates the correspondence between the global
attributes and the attributes of the local schemas.

 232 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

Figure 5 The mapping table

5 MOMIS and knowledge management

The integration process supported by MOMIS can be viewed from a KM perspective. To
do so, we have re-conceptualised the mediation process using the well-known Nonaka
knowledge creation model [12].

Local schemata are the starting point. They offer information that, coming from
different sources, is not directly comparable. Resolving the syntactic and semantics
inconsistencies existing between the various sources is the main goal of the MOMIS
integration process that can be subdivided into two sub-processes.

The first, automatically performed, is conducted by software components such as
wrappers, WordNet and so on. Using the Nonaka terminology this process can be
regarded as a knowledge combination process, since it applies the explicit knowledge
embedded in the software tools to the explicit knowledge contained in the catalogues to
produce new explicit knowledge [13]. Such new information is organised in a different
way (as far as the logical structure, the semantics and the syntax are concerned) from the
initial one. Nevertheless, it still includes mistakes and inconsistencies that make it
useless.

The second entails the decisive contribution of the integration designer and the
WDSes. It can be considered as a knowledge externalisation process, since the designers
apply their tacit knowledge about the business domain to the information generated in the
previous phase, to create new information, that will form the global virtual view, i.e. the
outcome of the integration process.

The last step concerns the search from the virtual catalogue and the utilisation of the
retrieved information by the end-user. Also this process can be read according to the
Nonaka taxonomy. In particular it can be considered a knowledge internalisation process,
since the end-user applies his tacit knowledge on the information contained in the virtual
catalogue to take business decisions.

 SOAP-enabled web services for knowledge management 233

The whole mediation process creates new knowledge and, consequently, produces
business value. The amount of the generated knowledge (and value) can be in the first
approximation estimated as the difference between the efficiency and efficacy [14] of the
end-user decision, made on the basis of the various catalogues taken separately and
starting from the unique virtual catalogue.

6 Related work

In the area of heterogeneous information integration, many projects based on mediator
architectures have been developed. The mediator-based TSIMMIS project [15] follows a
`structural’ approach and uses a self-describing model (OEM) to represent heterogeneous
data sources and the MSL (mediator specification language) rule to enforce source
integration and pattern matching techniques to perform a predefined set of queries based
on a query template. Differently from our integration approach proposal, in TSIMMIS
only the predefined queries may be executed and for each source modification a manually
mediated rules rewriting must be performed.

The SIMS [2] proposes to create a global schema definition by exploiting the use of
description logics, (i.e. the LOOM language) for describing information sources. The use
of a global schema allows both GARLIC and SIMS projects to support every possible
user queries on the schema instead of a predefined subset of them.

The information manifold system [15] provides a source independent and query
independent mediator. The input schema of information manifold is a set of descriptions
of the sources and the integrated schema is mainly defined manually by the designer,
while in our approach it is tool-supported.

Infomaster [16] provides integrated access to multiple distributed heterogeneous
information sources, giving the illusion of a centralised, homogeneous information
system. The main difference of this project, with regard to our approach, is the lack of a
tool aid support for the designer in the integration process.

Also inside the multi-agent system community some work has been done in the
direction of integration systems. For its similarities with the goal of the MOMIS system
the Infosleuth system [17] deserves a particular mention. Infosleuth is a system designed
to actively gather information by performing diverse information management activities.
InfoSleuth agents enable a loose integration of technologies allowing:

• extraction of semantic concepts from autonomous information sources

• registration and integration of semantically annotated information from diverse
sources

• temporal monitoring, information routing and identification of trends appearing
across sources in the information network.

Infosleuth bases its data analysis on given ontologies, explicitly given by humans (rather
than building them) and provides visibility of data related only to the specified queries,
while our approach aims at building ontologies related with the integration domain.

Another important experience is the RETSINA multi-agent infrastructure for
in-context information retrieval [18]. In particular the LARKS description language is
defined to realise the agent matchmaking process (both at syntactic and semantic level)

 234 I. Benetti, F. Guerra, M. Vincini and S. Bergamaschi

by using several different filters: context, profile, similarity, signature and constraint
matching.

7 Conclusions

In this paper we presented the new web services-based architecture of the MOMIS
framework. The architecture enhances the semantic integration features of the MOMIS
leveraging new technologies such as XML web services and the SOAP protocol.

The XML-based format makes SOAP human-readable, i.e. useful for debugging
purposes and quick implementation [19]. In addition it is based on HTTP and can be
implemented with little effort on top of exiting libraries and is supported by computer
industry leaders (Microsoft, IBM, SUN), while CORBA (previously adopted by MOMIS)
requires huge software packages and does not provide a commonly accepted
bootstrapping mechanism. Furthermore decoupling the MOMIS modules brings a
significant improvement in semantic integration, as both the knowledge supplied by the
WDS and an overall cut of the infrastructure requirements make the business processes
integration a low-overhead, cost-effective task.

Acknowledgments

This paper has been partially supported by MIUR within the D2I and the ‘Agenti
software e commercio elettronico: profili giuridici, tecnologici e psico-sociali ‘ projects.

References and Notes

1 http://www.dbgroup.unimo.it/Momis
2 Bergamaschi, S., Beneventano, D., Castano, S. and Vincini, M. (2001) ‘Semantic integration

of heterogeneous information sources’, J. of Data and Knowledge Engineering, March,
Vol. 36, No. 3, pp.215–249.

3 Benetti, I., Beneventano, D., Bergamaschi, S., Guerra, F. and Vincini, M. (2002) ‘An
information integration framework for e-commerce’, IEEE Intelligent Systems Magazine,
January/February.

4 IBM Web Service Architecture Team (2000) Web Services Architecture Overview – The Next
Stage of Evolution for E-Business, September.

5 W3C (2002) ‘Simple Object Access Protocol (SOAP) 1.2’, W3C Working Draft, 26 June.

6 Beneventano, D., Bergamaschi, S., Bianco, D. Guerra, F. and Vincini, M. (2002) ‘SI-Web: a
web-based interface for the MOMIS project’, SEBD 2002, Isola d’Elba, Italy.

7 Curbera, F. Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S. (2002)
‘Unravelling the web services web: an introduction to SOAP’, WSDL and UDDI, IEEE
Internet Computer, March-April, pp.86-93.

8 Kreger, H. (2001) ‘Web services conceptual architecture’, (WSCA 1.0), May IBM Software
Group, Available from: http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

9 W3C (2001) ‘Web services description language’, (WSDL) 1.1, W3C Note, 15 March.

10 Miller, G. (1995) ‘Wordnet: a lexical database for English’, Communications of the ACM,
Vol. 38, No. 11, pp.39–41.

 SOAP-enabled web services for knowledge management 235

11 Beneventano, D., Bergamaschi, S., Sartori, C. and Vincini, M. (1997) ‘ODB-tools: a
description logics based tool for schema validation and semantic query optimization in object
oriented databases’, Proceedings of IEEE Int. Conference on Data Engineering (ICDE-97),
Birmingham, UK.

12 Nonaka I. and Takeuchi H, (1995) The Knowledge Creating Company, Oxford University
Press, New York.

13 Nonaka and Takeuchi [12] precisely state that reconfiguration of existing information through
sorting, adding, combining and categorising of explicit knowledge can lead to new knowledge.

14 In very short, efficiency is related to time and efforts spent in retrieving workable information;
efficacy, instead, concerns the “quality” of the decision taken on the basis of the retrieved
information.

15 Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y,. Ullman, J. and
Valiveti, M. (1998) ‘Capability based mediation in TSIMMIS’, SIGMOD 98 Demo, Seattle,
June. 16

16 Genesereth, M.R., Keller, A.M. and Duschka, O. (1997) ‘Infomaster: an information
integration system, Proceedings of 1997 ACM SIGMOD Conference, May.

17 Nodine, M.H., Fowler, J. Ksiezyk, T., Perry, B., Taylor, M.C. and Unruh, A. (2000) ‘Active
information gathering in InfosleuthTM’

, IJCIS, Vol. 9, Nos. 1-2, pp.3-28.

18 Sycara, K. (1999) ‘In-context information management through adaptive collaboration of
intelligent agents’, Intelligent Information Agents, pp.78-99.

19 Haustein, S. (2001) ‘Semantic web languages: RDF vs. SOAP serialisation’, Proceedings of
the Second International Workshop on the Semantic Web – SemWeb’2001, Hongkong, China,
1 May.

	Untitled
	Untitled
	Untitled

