
Distributed Database Support for

Data-Intensive Work
ow Applications

S. Bergamaschi1;2, S. Castano3, C. Sartori2, P. Tiberio1, M. Vincini1

e mail: ftiberio,sonia,vincinig@dsi.unimo.it castano@dsi.unimi.it
csartori@deis.unibo.it

1 Dip. di Scienze dell'Ingegneria, Univ. di Modena e Reggio Emilia,
2 Dip. di Elettronica, Informatica e Sistemistica CSITE - CNR, Univ. di Bologna

3 Dip. di Scienze dell'Informazione, Univ. di Milano,

Abstract. Work
ows deal with the automation of business processes

in which documents, data and tasks are transferred among participant

roles according to a de�ned set of rules to achieve a common goal. Work-

ow management systems (WFMS) have mainly focused on implement-

ing the control
ow, paying few attention to the data
ow. However,

data-intensive work
ow applications require advanced data handling ca-

pabilities, typical of a DBMS, in order to be e�ciently supported by

the WFMS. In this paper we propose a data replication model, called

DOT (Dynamic Ownership Transition), to realize the integration be-

tween work
ow and database technology to support data-intensive work-

ow applications. DOT is derived from Distributed DBMS (DDBMS)

replication models and allows only one role at a time to have the own-

ership of data. An automatic mechanism for the dynamic update of the

ownership is provided, for a
exible data
ow management in enterprise

environment. The resulting system o�ers the functionalities of a WFMS

powered by a data handling mechanism typical of Distributed DBMSs.

The proposed solution has been implemented in a prototype system inte-

grating ActionWork
ow (Action Technology Inc.) WFMS and Microsoft

SQL Server.

1 Introduction

Nowadays, the companies want their data and applications to be opened and

distributed closer to the line of business. This means that information systems

must support the companies to provide the right information in the right places.

WFMSs have emerged as the leading technology to manage the execution of a

business process coordinating multiple information resources and several agents

spread across the enterprise [2, 8]. These systems are based on a process model

representing an enterprise business process as a set of coordinated activities per-

formed by several work
ow participants. The emphasis is on the control
ow

related to the coordination of the activities among the di�erent participants,

while data
ow management capabilities are poorly considered. Although many

WFMSs use a commercial DBMS as back-end server to store work
ow and ap-

plication relevant data, they do not take full advantage of DBMS capabilities in

data handling.

In this paper, we propose a new data replication model, called DOT (Dy-

namic Ownership Transition) and a distributed environment for data-intensive

work
ow applications, with advanced data handling capabilities of DDBMS. We

exploit the WFMS control capabilities for the control
ow and the DDBMS

capabilities for the data
ow. DOT model allows the management of the data

ow in a distributed environment involving several work
ow participants. It en-

forces the \update-anywhere" management, by preventing concurrent update

con
icts and by allowing only one owner of the data at a time authorized for

update operations. The model supports the automatic and dynamic data own-

ership change for a
exible data
ow management. The proposed model and

the associated environment have been implemented on two commercial systems,

namely, the ActionWork
ow (Action Technology Inc.) WFMS and its back-end

server Microsoft SQL Server. The former, based on a client-server architecture,

is strengthened with distributed WFMS functionalities by exploiting the SQL

Server Replication Subsystem. The latter is extended with the DOT model.

The paper is organized as follows. In Section 2, we recall the basic concepts

of work
ow modeling and present an example of data-intensive application. Sec-

tion 3 introduces the DOT replication model. Section 4 illustrates the proposed

system architecture including the virtual distributed WFMS and the DDBMS.

Section 5 discusses contributions of our work with respect to related work in the

literature, conclusion and future work.

2 Basic work
ow modeling concepts and running example

In a WFMS, a business process is usually described in form of a work
ow schema

as a set of activities, properly coordinated to achieve the process goal. Activities

(or tasks) are elementary work units. Connections among activities are speci-

�ed to de�ne the
ow structure of the process. Each work
ow schema has one

start point and several stop points. Connections among activities represent the

control
ow, that is, the order with which the activities have to be executed in

the process. Besides sequence, other connections among activities that can be

de�ned in the
ow structure are split connections, to initiate concurrent execu-

tion, and join connections, to synchronize after concurrent execution. Split and

join connectors can be composed in order to represent iteration or other complex

ow structures, where the same activity can be executed several times within

the same work
ow execution.

Di�erent types of data are managed by the WFMS for process execution. Be-

sides system and work
ow relevant data maintained by the WFMS for a correct

execution of each process instance and transition predicate evaluation, applica-

tion data have to be managed, since they are necessary for the accomplishment

of process activities. Application data are process speci�c data (e.g., documents)

that are external to the work
ow and are managed by the WFMS by invoking

external tools, such as for example a DBMS. In the remaining of the paper, we

will refer to application data that constitute the input/output of a given activity

as dataset. Each activity in a work
ow schema is then characterized by one or

more input datasets and by one or more output dataset(s), depending on how

the data
ow is de�ned.

The same work
ow schema can be instantiated several times for execution,

into the so called process instances. The WFMS executes a process instance by

Reject

Legenda

start/end

data flow

control flow

CN

CN

CnN

JN

JE

CN
JECN

JE

JEn

CN
JE
JEnCN

JE
JEn
JN

CN
JE
JEn
JN

CN
JE
JEn
JN
CnN

CN
JE
JEn
JN
CnN

��
��
��
��

����Office of the Clerk Judge Council Chamber

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
����������

�����
�����

�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Receive
Information

Preliminary

Open
Process

Adoptability

Accept

Ignore

Evalutation

Notification Notification

Investigation

Evalutation

child notification

judge evaluation

judge enquiry

judge notification

Council notification

Negative Positive

Notify

Fig. 1. Example of an Activity Graph related to an Adoption process

scheduling activities according to the
ow structure of the work
ow schema and

by assigning them for execution to a human or automated agent (also called

work
ow participant). For a
exible assignment of activities to work
ow partic-

ipants, commercial WFMSs generally support the de�nition of an organization

schema, where work
ow participants are grouped into organizational elements,

such as, for example, roles. In this way, activities in the work
ow schema are

associated with a role rather than with an individual participant. The work
ow

participants authorized for activity execution are determined run-time, as an

activity is scheduled for execution.

Di�erent work
ow models are adopted in commercial WFMSs for work
ow

schema de�nition, and currently a standard graphical notation is missing. In the

following, we will refer to the work
ow model notation proposed by the WfMC

(Work
ow Management Coalition) [2], where a business process is represented

as an activity graph, where activities are graphically represented by rectangles

and activity connections by oriented lines (arrows).

Running example

Let us consider, as an example, a simple data-intensive work
ow process in

the Public Administration, concerning the process of inserting a child in the

national adoption list (according to law 184/83 of the Italian Republic). The

activity graph representing this process is shown in Fig. 1. The �gure shows

the activities, the roles, the control
ow, and the data
ow characterizing the

process.

The process starts when the Juvenile Court is noti�ed of an abandoned child.

This noti�cation is registered by the Court's Office of the Clerk and then

forwarded to the proper Judge who starts the legal paper, if he �nds su�cient

grounds to proceed. In this case, the judge performs preliminary investigations

to collect as many information as possible about the child (e.g., existence of

relatives who could adopt the child; child's legal and factual status; previous re-

lated judgments and laws). At the end of this activities, the case is forwarded to

the Council Chamberwhich has to pass judgment about the child's adoptability.

3 The DOT replication model for data-intensive work
ow

applications

In this section, we �rst describe basic models of data replication supported by

DDBMSs and their implementation, then we propose the DOT replication model

speci�cally conceived for realizing the distributed environment for data-intensive

work
ow applications.

3.1 Data replication in a DDBMS

The goal of data replication is to provide users in a distributed environment

with their local copies of data. These local, updatable data copies can sup-

port increased localized processing, reduced network tra�c, easy scalability and

cheaper approach for distributed processes.

Two basic replication models are generally supported by a DDBMS: syn-

chronous replication and asynchronous replication. The synchronous replication

(also called eager or tight consistency) guarantees that all data copies are always

synchronized with the original data. This is obtained by using one atomic trans-

action to update both the original data and its replicated copies. This model

reduces performance and availability, since it increases the transaction response

time due to extra updates and messages that are necessary for synchronization.

The asynchronous replication (or lazy or loose consistency) allows a time interval

between the update operation on the original data and the corresponding up-

date operation on its replicated copies. This model maximizes availability and

response time, but introduces data integrity problems on concurrent updates.

Such subsystems support both the synchronous and the asynchronous repli-

cation model, but do not manage the concurrent update on the same data from

two or more di�erent sites. Consequently, when more than one site tries to up-

date the same record, a concurrency anomaly is detected and the application

must manage the exception by a reconciliation algorithm. To avoid these prob-

lems the two phase commit protocol (2PC), would be useful. 2PC (the distributed

version [6] and variations of it [4, 5]), is a very simple and elegant protocol that

ensures the atomic commitment of distributed transactions. On the other hand,

the performance of the distributed commit protocols with respect to the overhead

they add is unsatisfactory for the real applications. Thus, at present, concurrent

updates on distributed data are left to the responsibility of the application pro-

grammer. This choice leads to an increasing di�culty and cost of the application

development.

3.2 The DOT Model

To �nd the most suitable replication model for managing distributed data in a

work
ow system, we observe that in a work
ow application:

{ Each activity in the work
ow process is characterized by an input set and an

output set. The input set contains all the datasets required by the activity to

start and accomplish its goal. The output set contains all the datasets result-

ing from the execution of the activity. During activity execution, each input

dataset is manipulated (through read and/or update operations) following

the activity procedure rules in the work
ow speci�cation.

{ Based on the
ow structure de�ned for a given process, it is possible to de-

�ne the life-cycle of each dataset in the process. The life-cycle of a dataset di
outlines: i) the states of the dataset before and after the execution of the ac-

tivities having di in their input/output sets; ii) state transitions, determined

by the activity execution, according to the
ow structure.

{ An organizational role is associated with each activity of the work
ow, for

a
exible assignment of activities to work
ow participants.

This way of working suggests the introduction of a replication model to man-

age updates on replicated data by taking into account the speci�c characteristics

of dataset management in work
ow process execution. We call this model DOT

(Dynamic Ownership Transition) replication model.

DOTmodel is a new replication model that implements the \update-anywhere"

management, by preventing concurrent update con
icts. To achieve this, the

model is based on the concept of data owner. The role (and consequently, the

work
ow participant) designated as the owner of a certain dataset di is autho-

rized to insert, delete and update di. Other roles are authorized to perform only

read operations on di. Among all roles, only one role at a time can be desig-

nated as the owner of a certain dataset (speci�cally, the role associated with

the activity under execution). DOT model provides a dynamic and automatic

data ownership change, as the activity execution proceeds, to support all data

updates required in the work
ow process.

The DOT model is based on the notion of dataset life-cycle. Given a dataset

di, the life-cycle L(di) of di is a graph L(di) = hN;Ei, where:

{ N = fn1; : : : ; npg is a set of nodes. Each node nj 2 N represents a state

of di. In particular, each node is a triple nj = (namej ; ownerj ; typej),

where: namej is the name of the state in the graph; ownerj is the role

that owns the dataset in the state nj and has the permission to update di
in the state nj ; typej denotes the kind of node in L(di), with typej 2 f
start,end,internalg. Each life-cycle has one start node, one or more end
nodes, while remaining nodes are internal nodes.

{ E = fe1; : : : ; eqg is a set of labeled edges. Each edge eh 2 E represents a state

transition from a starting state to a destination state of di. In particular,

each edge is a triple eh = (labelh; [sourceh]; destinationh), where: labelh is

the label associated with eh corresponding to the name of an activity of the

work
ow schema; [sourceh] is the source node of L(di) representing the state

of di before the execution of the activity referred by labelh; destinationh

is the destination node representing the state of di after the execution of

the activity referred by labelh. The source node sourceh of an edge eh can

be missing (denoted by the symbol []); in this case, the destination node

destinationh is the start node of L(di).

AcceptedRejected

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
�� ����

open process

Adopt

Queue

OpenedInserted
notify

receive information

ignore

reject accept

Office of the Clerk Judge Council Chamber

investigation

adopt. evaluation

Eval.
Prelim

Fig. 2. Data State Transition Graph for the Child legal document dataset

According to this de�nition, the life-cycle of a dataset is represented as a

graph, called Data State Transition Graph (DSTG). For example, with reference

to the Adoption work
ow process of Fig. 1, the DSTG for the Child legal

document dataset is shown in Fig. 2, where circles represent nodes and arrows

state transitions. The Inserted state is the start state, while the states having

a double circle border (i.e., Rejected and Accepted) are the �nal states. Arrow

labels correspond to the names of activities in the work
ow schema of Fig. 1. The

owner of a state (i.e., the role responsible of the activity referred by the arrow

entering the state) is graphically shown with a pattern inside the corresponding

circle.

There is a close relationship between the two graphs of Fig. 1 and Fig. 2.

The former represents the work
ow process schema, by showing the activities to

be undertaken to accomplish it and their connections. The latter represents the

changes in state that a given dataset undergoes as a consequence of the activities

of Fig. 1 as the work
ow execution proceeds, therefore the edge labels are given

by activity names of Fig. 1.

Let us examine the Opened state. When the Child legal document is in

this state, the Judge has already been noti�ed about the child, and agreed to

open a case. He is, therefore, investigating to collect more information about

child's position. The investigation transition exactly represents this activity.

The state is exited only when the Judge closes the preliminary investigation

(adoption evaluation transition) forwarding the Child legal document to

the Council Chamber. Notice that during the period in which the Child legal

document is in judge's owned states, only the Judge himself has the authorization

to update it. In the meantime, other roles can perform only read operations on

the Child legal document (speci�c triggers prevent every possible con
ict, as

discussed below).

By constructing the DSTG graphs for all datasets and all roles involved in

a work
ow schema, we can apply the DOT model and manage all data
ows

involved in the work
ow process execution. The strict relationship existing be-

tween the activities of the
ow structure of a work
ow schema and the transitions

in the DSTG graph is the basis to allow the integration of the control and data

ows management in a distributed system architecture integrating database and

work
ow technology, based on the DOT model.

3.3 Dynamic Ownership Transition

At the implementation level, the model is enforced by means of triggers. Triggers

are de�ned to check that, on any requested insert, update, or delete operation

on a given dataset, the requesting work
ow participant (i.e., the agent actually

executing the activity from within the operation is requested) has the right au-

thorization for the requested operation. Moreover, triggers are de�ned to enforce

the dynamic ownership change in the system.

The data access permission and the dynamic ownership change process are

based on the state of a dataset. A dataset di is implemented in a relational

DDBMS as a set of fragments of tables. Thus, di state is represented by adding

a state column to each table of di and by three DOT support tables (see below).

Suppose to have a simple dataset containing information about child; the state

column is added to describe its actual state in the Adoption Process. A possible

instance of this child dataset is shown in Figure 3.

Child Table

name birthdate state

...

Joe 02/07/94 Rejected

Mary 12/06/95 Opened

Paul 05/06/91 Eval

Mark 09/01/97 Opened

...

Fig. 3. Example of child dataset

The following DOT support tables are de�ned to store the DSTG of a dataset

di in the distributed database:
State Table : speci�es, for each possible state of di, the owner role authorized

to modify di, a
ag specifying the kind of state (i.e., start, internal, end

state);

State Trans Table : describes the possible state transitions for di, by specifying

the involved activity, as well as the source and destination state;

Role Server Table : speci�es the allocation of a role to a speci�c server in the

distributed environment, and has schema (role, server name).

Fig. 4 shows the tables (automatically generated by the DOT Builder soft-

ware module, see Section 4.2) for the DSTG of Fig.2.

State Table Role Server Table

state name owner type

Inserted Clerk start

Eval Judge internal

Opened Judge internal

AdoptQueue Council internal

Rejected Council end

Accepted Council end

role server name

Clerk Clerk Server

Judge Judge Server

Council Council Server

State Trans Table

label source destination

Receive Inform. NULL Inserted

Notify Inserted Eval

Open Process Eval Opened

Ignore Eval Rejected

Investigation Opened Opened

Adopt. Evaluation Opened AdoptQueue

Reject AdoptQueue Rejected

Accept AdoptQueue Accepted

Fig. 4. Example of support DOT Tables for the DSTG of Fig.2

Suppose that a Judge agent, after investigating and evaluating on Mary's

adoption, decides to send the child dataset to the Council Chamber for the

�nal sentence. This involves an update for the state of Mary dataset from the

Opened value to the AdoptQueue value. Based on the information stored in the

support tables, the system veri�es that the Judge is the owner of the Mary dataset

(State Table), and that the transition from the Opened to the AdoptQueue state

is admissible (State Trans Table). The update request is successfully executed

and the Mary dataset is updated to the AdoptQueue state. This also involves the

ownership change for Mary dataset from the Judge role to the Council role.

In general, for each request regarding an insert, update or delete operation

on a dataset di from within an executing activity, the following actions are

performed:

1. storing of the state before, say S1, and the state after, say S2, for the oper-

ation requested on di;

2. checking that the role requesting the operation is the owner of S1 and that

the transition from S1 to S2 is admissible, based on the information reported

in the State Trans Table;

3. performing the requested operation if the check is positive;

4. changing the ownership of di, if the owner of S2 in the State Table is dif-

ferent from the owner of S1.

The above actions are implemented by triggers, which are automatically gen-

erated by the DOT Builder software module (see Section 4.2).

4 A distributed work
ow architecture based on DOT

In this section, we describe the distributed work
ow architecture of the proposed

system that combines ActionWork
ow for the management of the control
ow

and SQL Server with its Replication Subsystem for the management of the data

ow.

4.1 Making ActionWork
ow a virtual distributed WFMS

ActionWork
ow is a client-server WFMS working in connection with a back-end

server managing its databases.

Each ActionWork
ow installation consists of two subsystems: Business Pro-

cess Builder and Process Manager (see [9]). The former is a stand-alone program

that enables users to draw the Activity Graph (here called Business Process Map,

BPM), and to compile it; the latter must be installed on the server and manages

process loading and execution. ActionWork
ow works with two databases, called

aws and awsarch. All the operations made on process instances are, on a lower

level, simple read/write/update operations on tables of the aws database; i.e. it

is the real implementation of an executable process. Awsarch archives data of

completed actions.

In order to make ActionWork
ow work as a \virtual distributed" work
ow sys-

tem we need to a) install an ActionWork
ow Process Manager on each site of

the network and b) con�gure a replication schema for the aws databases through

the DDBMS Replication Subsystem.

In this way all the servers can virtually operate on the same process instance,

even if there is a replicated process instance for each site server.

4.2 The distributed system architecture

The system architecture we propose is shown in Fig. 5. The DOT components

interact with the ActionWork
ow components both at con�guration time and

run time.
Con�guration phase The goal of the con�guration phase is to de�ne the

work
ow schema (i.e., the control and data
ow and involved activities) and to

set up the data distribution.

{ BP Builder: it allows the de�nition of the work
ow maps4, work
ow loops

and links in the de�nition database, and provides an automatic checking of

the map based on the ActionWork
ow System rules. With reference to our

example, the Activity graph of Figure 1 is drawn with this component.

4 The ActionWork
ow Business Process Builder uses a graphical notation slightly dif-

ferent from the one used by the WfMC; to be general, we used the WfMC notation.

Replication

DB

DBMS +

Workflow

Subsystem
Replication

Subsystem

Engine

AWS DB
DOM Trigger

AWS DB
DOM Trigger

Distributed System
Access to other

Routine

Mapping

BP Map

CONFIGURATION PHASE

BP Builder

DOM Builder

RUN TIME PHASE

Workflow
Engine

DBMS +

DB
Replicated

Fig. 5. Proposed system architecture

{ DOT Builder: it is the prototype tool we developed to support the de�ni-

tion of the DSTGs (by a graphical interface). DOT automatically generates

the script �les containing the triggers and the checks to implement both the

dynamic ownership behavior and the data distribution on the DBMS. In

particular the data distribution is obtained by de�ning a star network (see

Fig. 6 for an example network), where each node is a server site that main-

tains the information about the roles authorized to execute the operations at

this site and a \virtual" master site is created, which coordinates the broad-

cast replication to the peripheral nodes. To prevent concurrent updates on

work
ow instance and data within the distributed network, our approach

limits the execution grant of a role to a single site server, while in a site can

coexist many roles. This constraint does not result in a loss of generality as

a BP Map role is often physically tied to a single department (server site).

Note that, by using DOT Builder, we simply introduce the list of the nodes

with their associated roles, a node as a master site and the star network func-

tionalities for data distribution and automatically generated. The replicated

transactions move in both directions between the local server sites and the

master site (no transaction can be moved between two local servers). The

two types of publications are called PUSH and PULL respectively: i) the

PUSH publication, at a local server site, sends the data modi�ed by the

owner to the master server; ii) the PULL publications, at the master site

(one for each server site), contain the data to be distributed at each server

site.

System set up This section describes the steps required to set up the whole

distributed environment.

1. Install ActionWork
ow and SQL Server at each network site.

In order to provide the distributed functionalities, each single site requires

both the work
ow engine (ActionWork
ow Process Manager) and SQL Server

to manage locally the control and data
ow of the BP Map instances.

2. Install the BP Map into the Master Server.

In order to provide an executable BP Map to the work
ow engine, it is neces-

PUSH

PULL

Master

Clerk
Server

Judge
Server Server

Council

Fig. 6. Adoption Child network topology

sary to import the proper BP Map into the Master server's ActionWork
ow

Process Manager.

3. DOT Tables and Trigger implementation.

This operation, denoted in Fig. 5 as DOT Trigger, consists in adding to the

aws database of the master server, the following tables, triggers and �elds:

{ DOT Tables: State Table, State Trans Table and Role Server Table

described in Section 3.3;

{ Check Triggers: the set of triggers which manage transitions according

to the DSTG of the activity;

{ DOT Fields. A new �eld is added to the application data tables in order

to implement the dynamic ownership mechanism (state attribute).

4. Synchronize all work
ow engines.

In order to provide a unique BP Map description and its unique correspond-

ing DSTG for all the engines within the network, it is necessary to replicate

the Master server's aws tables to all involved sites. Operating this way,

the process is installed and then executed virtually as unique, and can be

managed by the resulting system in a distributed way. Notice that the aws

database replica con�guration is automatically performed by the system by

using the script �les generated by DOT Builder.
Run time phase During the run time phase the distributed work
ow engine

manages the business process instances and uses the aws database to determine

which acts have been completed and which acts can be performed. It includes

a scheduler process and a transaction manager to execute work
ow instances.

Thanks to the set-up operation 3 and 4, its behavior is distributed and supports

dynamic ownership change.

5 Related work Concluding remarks

The approach of distributing the data in a work
ow environment was proposed

in [7] and in [1]. In [1] the main idea for the integration of the control and data

ow consists to use the replication capabilities of Lotus Notes [3] to de�ne a

loosely synchronized replicated database. A similar approach has been adopted

in [7], where the data
ow is realized on top of a distributed relational database

system prototype.

In both proposals, and also in our approach, the main goal is that any data

required for the execution of a work
ow activity be writable/updatable at the

execution site, and readable at the other sites. The papers discuss also the trans-

actional implementation, using a message communication protocol among the

nodes to ensure the atomicity of an activity. Our approach, instead, uses and con-

�gures the distributed replication protocol management o�ered by the DDBMS.

Furthermore, the above approaches support simple data types (that are integer,

booleans, string), while the de�nition of the dataset permits, in DOT, to manage

complex data implemented by relational tables.

In this paper, we have presented a novel integrated architecture to manage

the control
ow and the data
ow in distributed, data-intensive work
ow ap-

plications. The architecture relies on the DOT replication model, based on the

concepts of data owner and dynamic ownership change, to manage distributed

updates to the application data used by the work
ow application.

Original aspects of the proposed distributed architecture are related to the

presence of local work
ow engines in each site connected to the external DDBMS

Replication Subsystem, to provide distribution around the network. A prototype

of the system has been realized at the DSI-University of Modena, using Action-

Work
ow, SQL Server and Visual C++ for the DOT Kernel development.

Future work will be devoted to the implementation of a con�guration GUI

and mapping rules to help the designer in the integration between control and

data
ow to improve the integration between DOT Builder and the Action Work-

ow Business Process Builder.

References

1. G. Alonso, B. Reinwald and C. Mohan, \Distributed Data Management in Work-

ow Environments". Research Issues in Data Engineering (RIDE), Proc. of the

Int. Work. in Birmingham, UK, pag. 82-90, IEEE Computer Society Press, 1997.

2. D. Hollingsworth, \Work
ow Management Coalition: The work
ow reference mod-

el", Document WFMC-TC-1003, Work
ow Management Coalition, Nov. 1994, ac-

cessible via http://www.aiim.org/wfmc/.

3. L. Kawell, S. Beckhradt, T. Halvorsen, R. Ozzie and I. Greif, \Replicated document

management in a group communicating system", in Proc. of the Conf. on Computer

Supported Cooperative Work, CSCW(Portland, Oregon), 1988.

4. C. Mohan and B. Lindsay, \E�cient Commit Protocols for the Tree of Processes

Model of Distributed Transactions", in 2nd SIGACT-SIGMOD Symp. on Princi-

ples of Distributed Computing, pag. 76-88, ACM, 1983.

5. C. Mohan, B. Lindsay and R. Obermarck, \Transaction Management in the R�

Distributed Database Management System", ACM Trans. Database System, pag.

378-396, N. 11, S. 4, ACM, 1986.

6. M. T. Ozsu and P. Valduriez, \Principles of Distributed Database Systems", Pren-

tice Hall International Editions, New Jersey, 1991.

7. B. Reinwald and H. Wedekind, \Automation of Control and Data
ow in Dis-

tributed Application System" in Proc. of DEXA, in Valencia, Spain, pag. 475-481,

Berlin 1992, Springer-Verlang.

8. H. Stark and L. Lachal, \Ovum Evaluates Work
ow", Ovum Evaluates, Ovum

Ltd., London, 1995.

9. Action Technology Inc., \ActionWork
ow Enterprise Series 3.0: ActionWork
ow

Guide", 1993-1996.

This article was processed using the LATEX macro package with LLNCS style

