
The SEWASIE multi-agent system

S. Bergamaschi1, P. Filottrani2, and G. Gelati1

1 Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Via Vignolese 905, 41100 Modena, Italy
2 Faculty of Computer Science

Free University of Bolzano-Bozen
Piazza Domenicani 3, 39100 Bolzano, Italy

sonia.bergamaschi@unimo.it

p.filottrani@inf.unibz.it

gelati@dbgroup.unimo.it

Abstract. Data integration, in the context of the web, faces new prob-
lems, due in particular to the heterogeneity of sources, to the fragmen-
tation of the information and to the absence of a unique way to struc-
ture and view information. In such areas, the traditional paradigms, on
which database foundations are based (i.e. client server architecture, few
sources containing large information), have to be overcome by new ar-
chitectures. The peer-to-peer (P2P) architecture seems to be the best
way to fulfill these new kinds of data sources, offering an alternative to
traditional client/server architecture. In this paper, we envisage a multi-
level architecture, with local nodes and communities strongly tied with a
semantic context which is well defined and offers a globally integrated on-
tology to represent everything. At a wider level the relationships among
distinct nodes are established by means of weaker mappings.

1 Introduction

Data integration in the context of the web faces new problems, due to the het-
erogeneity of data sources, to the fragmentation of the information and to the
absence of a unique way to structure and view information. Internet can be
viewed as a P2P data-sharing system with an enormous amount of data, where,
to overcome information overload, it is necessary to develop new mechanisms
allowing users to quickly understand and search for desired data. Designing such
a mechanism is difficult, mainly because peers have different semantics and is-
sues concerning the logical topology of peers and the semantical topology of the
network (how data and metadata are related and distributed) have to be solved.
It is no longer realistic to assume that the peers composing the system act as
if they were a single data virtual source. We rather replace the role of a single
virtual data source schema with a P2P approach relying on limited shared or
overlapping vocabularies between peers. Our approach has brought to the defi-
nition of a new type of mediator system intended to operate in web economies,



called the SEWASIE system. The idea underlying our proposal is that at lo-
cal level things may be done more richly than at wider level. We envision a
multi-level architecture, with local nodes and communities strongly tied with a
semantic context which is well defined and offers a globally integrated ontology
to represent everything. At a wider level the relationships among distinct nodes
are established by means of weaker mappings.

Our approach has brought to the definition of the SEWASIE system archi-
tecture. We can think to the SEWASIE architecture as composed by a logical
topology and a semantic network. The logical topology is realised through the
adoption of an agent framework. Our reference implementation uses Jade, the
popular agent/peer platform for building distributed systems. This has very
important implication, as Jade is guided by the FIPA standards, the leading
organisation in the field of agent technology specifications. On the top of this
framework, we added a security layer, that allows to deploy Jade in firewalled
networks. The semantic network is realised by agents offering services and in-
teracting in semantically rich manners. In the SEWASIE architecture, each peer
(or agent) has a type that determines the set of services the agent provides to
other agents, and the set of actions the agent can invoke in response to a service.
These actions have the side effect of changing the data structures managed by
the agent, and/or sending messages to other agents requesting services. There
are four basic types of agents in the SEWASIE architecture: query agents (QAs),
brokering agents, monitoring agents and communication agents. The multi-agent
system is a typed-closed agent system, in the sense that is is not expected to have
functionalities uncovered by the defined type of agents. The logical topology and
the semantic network have been designed to meet the functional requirements of
the SEWASIE project. Other requirements arise when we have to deploy the sys-
tem. Deployment requirements are usually specific to the particular installation
to set up. One of the major issues we have to face in a number of cases is how
to deploy a MAS in server environments, where the purpose is to avoid affecting
existing system configuration as much as possible. For our MAS platform, this
deployment requirement is met using a tunneling technique.

The paper is organised as follows. In Section 2 we describe the general arhci-
tecture of the SEWASIE system. In Sections 3 and ?? we detail the agent types
we have defined and how they behave and interoperate. In Section ?? we re-
port the implementaiton choices we have made. In Section ?? we present the
SEWASIE system deployment architecture. Finally, in Section 8 we draw some
conclusions.

2 General SEWASIE architecture

The SEWASIE system architecture[?] satisfying the is shown in figure 1.
Brokering agents (BAs) are the peers responsible for maintaining a view of

the knowledge handled by the network. This view is maintained in ontology

mappings, that are composed by the information on the specific content of the
SINodes which are under the direct control of the BA, and also by the informa-



tion on the content of other BAs. Thus, BAs must provides means to publish
the locally held information within the network.

Query agents (QAs) are the carriers of the user query from the user interface
to the SINodes, and have the task of solving a query by interacting with the BAs
network. Once a BA is contacted, it informs the QA a) which SINodes under
its control contain relevant information for the query, and b) which other BAs
may be further contacted. Therefore, the QA translates the query according to
the ontology mappings of the BA, and directly ask the SINodes for collection
partial results. Also, it decides whether to continue the search with the other
BAs. Once this process is finished, all partial results are integrated into a final
answer for the user.

Fig. 1. The SEWASIE system architecture.

The SEWASIE information nodes (SINodes) are mediator-based systems,
each including a global view of the overall information managed within. The
managed information sources are heterogeneous collections of structured, semi-
structured or unstructured data, e.g. relational databases, XML or HTML doc-
uments. SINodes are accessed by QAs in order to obtain data, and also by the
managing BAs in order to build the ontology mappings. In order to create and
maintain a global view of its information sources, SINodes require an ontol-
ogy builder. This component performs in a semi-automatic way the enrichment



process to create the SINode ontology. In turn, this SINode ontology is also
integrated with other similar components into the BAs ontology mappings.

The user interface is a group of modules which work together to offer an
integrated, easy to the user interaction with the SEWASIE system. It includes a
query tool that guides the user in composing queries. In doing so, it requires the
ontology of a starting brokering agent which helps in the interface presentation
and behavior. Each instance of the query tool includes a Query Tool Agent
(QTA) that is responsible to carry out communications with other agents in the
SEWASIE system. In general, QTA are need to obtain the initial ontology from
a BA, and also to create QAs that will solve the queries generated by the user.

Two extra elements of the user interface are the visualization tool and the
communication tool. The visualization tool is responsible for monitoring informa-
tion sources according to user interests which are defined in monitoring profiles.
To perform this task, the visualization tool generates one monitoring agent for
each topic of interest. Each monitoring agent contains a fixed internal ontology
(so-called domain model) which is linked to higher level SEWASIE ontologies.
Agents of this type regularly set up QAs, filter the results, and fill monitoring
repositories with observed documents.

The communication tool supports negotiation between the user and other
parties. Any query whose result includes contact information sets the context to
launch the communication tool. This tool create several types of communication
agents (CAs) that help in finding and contacting potential business partner, ask-
ing for initial offers, and ranking them. The human negotiator can then decide
and choose the best offer to begin negotiating with support from the communi-
cation tool. CAs belong to one of the following four types:

– Initiation agents: that maintain the pre-negotiation phase for each search.
– Filtering and Ranking agents: that evaluate offers and ranks them according

to given user preferences.
– Resource Management agents: that check the capacity of the negotiator and

notify him by over-commitment.
– Negotiation agents: that conducts the negotiation when a well defined state

is achieved, and the user releases the control.

In order to fulfill their tasks, initiation agents and filtering and ranking agents
can create query agents to search for information in the SEWASIE network.

The SEWASIE system is a type-closed agent system, in the sense that it
is not expected to incorporate new types of agents, although it is possible to
incorporate, and delete, new agents of the previously described pre-defined types.
In next section we will describe the services and the life cycle of each type of
agent. Once the agent platform is chosen, and the available tools are known,
then these descriptions are the basis for implementing the agents.

3 Agent Descriptions

In this section, we detail the behaviour of each agent present in the SEWASIE
system architecture.



3.1 Query Agent

Query Agents are in charge of the global query execution strategy, namely ad-
dressing the initial BA, receiving SINodes and BA references, actually querying
specific SINodes and combining their results. The term query is to be interpreted
as a general statement in a known intermediate query language, and includes
information on the context of the user at the time of the establishment of the
query[?].

A QA is the “motion item” of the system, and is the only carrier of informa-
tion among the user and the system. The following service is the main objective
of a QA:

– solve-query to carry a query plus the relevant pieces of the user ontol-
ogy/profile, which may help BAs to qualify the semantics of the query, de-
fine a query plan, doing the query rewriting for specific SINodes and BA,
and merge the results. These actions involve processing information from
BA, and decide which further BA to contact. In order to fulfill this service
the QA needs to know the query and the initial BA. This service should be
invoked through an asynchronous messaging protocol.

This service is available only to QTA, MA and CAs. A specific query language
for the initial query plus the context information, and the language for results,
are defined in XML schema.

The life cycle of a QA is initiated by an invocation of this only service, and it
is finalized when delivering the results. Therefore, the life of a QA is attached to
only one query processing. QAs are instantiated by users for each request to the
system, but also by other agents like monitoring agents. In principle, it seems
preferable that QAs reside in a single Server node, sending remote messages
to BA and SINodes on other Server nodes, so mobility is not an issue for QA.
Anyway, it might be possible for a query agent to decide that the SEWASIE
Server node it is residing in is overloaded, and therefore prefers to move to other
Server node in order to improve query answering performance (load balance).
These mobility could be supported and/or implemented by the underlying agent
platform.

The following actions are combined in a QA to respond to a solve-query
demand:

– validate-query when receiving a query, the agent must parse it in order
to check whether it is well-defined, and to extract from it the information
about the initial BA.

– query-BA(BA) given a well defined query, this action translates it in terms
of the ontology understood by the BA, and presents the updated query to
it. As a result, the BA may respond with a set of relevant SINodes, and a
set of additional BAs to consult. The QA should ask the BA the ontologies
relevant to the query, rewrite the query according to these mappings, and
send the updated query to the BA. In [?] it is described the response the
BA should have in this case. The results obtained should update the internal
state of the QA.



– query-SIN(SINode,BA) given a well defined query, this action translates
it in terms of the virtual global view associated to a SINode, retrieves the
answer, and merges it with previous results. The rewriting of the original
query in order to be understood by the SINode, and the merging of partial
results are defined according to the given semantics (see [?]). The SINode
was informed to the QA by its managing BA, which is responsible also for
providing the SINode ontology in order to carry out the rewriting process.
The response of a SINode in this case is described in [?,?]. The merging step
could be done in this moment, or in the execution of query-SIN action, or
in both. This merging strategy has to be decided, according to the types of
the results from each SINode.

– deliver-result upon execution of this action, the QA decided that no more
searching is necessary. If the partial results are merged in each query-SIN
action, then this action trivially returns what has been previously con-
structed, and updates the query result manager. Otherwise, it builds the
final answer based on the partial results obtained from each SINode, and
also updates the query result manager.

All these actions also require knowledge of the initial query and the initial in-
stance of QT.

Therefore, a QA has the following properties:

– is attached to solve only one query. This query and the initial BA are pro-
vided by the QT.

– interacts with BA and SINodes in order to build the answer for its query.
– must adapt itself to the conditions on the network (missing BA, SINodes, or

delayed responses from them).
– has the possibility of being mobile, in the case it is aware of the load in the

host computer.
– exhibit no cooperation with other agents of its kind.
– finishes its execution after delivering the result.

3.2 Brokering Agent

BAs are responsible for maintaining the meta data about the SEWASIE network.
This meta data consists in the ontologies which are present in the underlying
SINodes, and also information about ontologies in other BAs. There are differ-
ent roles for BA which depend on the business model of the company which
deploys the BA. A company may establish a BA to manage access to its sources
which it makes available via SEWASIE. Alternatively, a company specialized on
information brokering may establish a BA that combines ontologies provided by
several other BAs.

In general, the following services should be offered by all BA:

– manage-SIN(SINode) the BA is selected to manage a SINode, or it is
instructed to update the ontology of an existing SINode. The local ontology
of the SINode has to be mapped to the ontology of the BA, and the BA has to



send a feedback to the SINode. Also, the new ontology must be broadcasted
to other BA.

– receive-ontology(ontology, BA) the BA is informed about the ontology
of another BA. The received material is incorporated in the current ontology
mapping of the BA, and it is evaluated for forwarding to others BAs. This
forwarding process may take time to complete, so the invoking message of
this service should be asynchronous. The requiring BA expects some feedback
from the validation of the ontology.

– get-mappings(query) a QA issues a query to the BA. The handling of this
service is the main task of a BA. The BA responds with a set of mapping
including other BAs and SINodes.

– get-info-ontology other SEWASIE agents (CA, QT, MA) request the on-
tology mappings of the BA.

The life cycle of a BA is initiated when an authorized user creates the BA.
In this process, knowledge of existing SINodes and other BAs should be imme-
diately handled to the newly created BA, in order to build the local ontology.
Being in the active state, a BA may receive messages for updating its knowledge
(the first two services described), or for consulting its knowledge (the last three
services described). Serving the former messages the BA it is said to be in de-

sign phase, while serving the latter the BA is in query phase. These two phases
need not be strictly separated. So in the active state, the BA can accept services
in both the design phase and the query phase. That is, requests to update its
knowledge, and requests to inform it. In case of simultaneous requirements of
different phases, the BA should define a policy for handling them. These agents
are expected to be rather large and sophisticated.

The following actions can be executed in response to the previous services:

– broadcast-ontology this action may be taken when the ontology of the
BA is updated, i.e. when services manage-SIN and receive-ontology are
requested. It involves deciding which other BA could be interested in the
updated ontology, and its packaging and sending.

– find-relevant-SINodes this action is taken when a query is submitted by
a QA. It is outlined in [?].

– find-relevant-BA this action is also taken when a query is submitted by a
QA. It is described in [?].

– deliver-answer collects partial results from the previous two actions, pack-
ages them, and delivers the result to the QA. The details of this action are
not yet defined.

A BA plan should include strategies to handle all incoming requests, and pro-
cessing their feedbacks. Adaptation to faulty network conditions should be con-
sidered for this type of agents. Moreover, it is necessary to analyze persistence
for these agentes, that is how to save their sates when the hosting computer is
shutting down. Migrating, or reflecting the state in a database could be done in
this case.



4 SINodes

SINodes group together several data sources, providing a logical node of infor-
mation to the network. These nodes may spread over several machines, and have
significant resources allocates. SINodes internal structure is described in [?].

The following services are available from SINodes to other agents:

– solve-query(query) accepts a query expressed in terms of the local ontol-
ogy, processes it according to the available data sources, builds the answer,
and finally delivers it. This service is only required from QA. The general
techniques for query reformulation and query processing within one SINode
is described in [?].

– get-info-ontology similar to the service in BA, informs the global view of
the data sources managed by the SINode. This service is required by those
BAs that are managers of the SINodes upon the establishing of the link, and
may be required later when BAs are updating their ontologies.

Once SINodes are created, in order to belong to the SEWASIE network,
they should be related to one or more BA. This process is carried out in a semi-
automated way using the ontology builder in the MOMIS system [?]. Afterwards,
a QA that have become aware of the SINode through its manager BAs, can
contact it in order to solve its query.

From the point of view of agents, SINodes are not very interesting since they
should autonomously reply all requests. In a similar way to BA, SINodes could
incorporate some kind of persistence in order not to rebuild its entire ontol-
ogy the hosting SEWASIE node is not available. Besides this feature, no other
agent characteristic like cooperation, adaptation, or mobility seems necessary
for SINodes.

4.1 Query Tool Agent

QTAs are the initiators of all search activities in the SEWASIE network. Likewise
SINodes, they are not very interesting agents, since all their work consists in
building messages, and waiting for results. No service is provided to other agents.
They are created whenever a Query Tool is instantiated, and the first task is to
find a suitable BA whose ontology is related to the user profile. Once the user
defines the query through the query tool, these agents must translate the query
into the internal language, pass it to a fresh QA, and wait for the results.

– find-initial-BA(user-profile) an initial BA must be selected, and if it is
available, contacted in order to get its ontology mappings.

– process-query the user interface finishes the process of creating a query.
First, a QA is created and the query is translated into the internal query
language. The query is passed within a message to the QA, and an accept
message from the QA is expected.

– receive-results results from a QA are received, processed and transferred
to the query tool in order to inform the user.



4.2 Monitoring Agents

MAs are responsible for monitoring information sources according to user inter-
ests. The description of the architecture of MA is in [5] and D4.3. These user
interests are defined as monitoring profiles, or are explicitly stated in the user
interface. The monitoring agent monitors information according to its internal
domain model and filters it according to the respective monitoring profiles of
the user. To perform this task, MA regularly generates queries in the SEWASIE
network, by creating new QAs each time.

The MA serves the following requests:

– monitor(BA-ontology) initiates the process of periodically retrieving data
and inserting it into the contextualized document repository which is main-
tained by the monitoring agent.

– filter(userID, monitoringProfile) delivers the data that was retrieved
and is new to the user with respect to his last filter request. Filter requests
should be invoked by the corresponding user interface.

Depending on the business model adopted, a MA may be set up and main-
tained exclusively by a single customer (i.e. company). Alternatively, one MA
can provide shared access for multiple customers interested in the domain. In
either case, from the agent point of view, a given MA should interact only with
QAs, calling for the solve-query service. The life cycle of a MA is defined by
serving one specific domain model. The suspended state should be used while
waiting between generating queries, and also while waiting for query results.

4.3 Communication Agents

CAs are in general very simple agents, that respond to unique services. Initiator
Agents are created when the user clicks on the corresponding button in the
Query Tool interface that shows the result of a query. A message is received
from the QTA, containing the result of the search in order to be parsed, and
the contact information to be extracted. Then, these agents sends emails to the
potential business partners. If at least one contacted user is registered, then the
agent creates a negotiation process in the communication tool [?]. So it serves
to services:

– initial-contact(query-results) the initial message for the agent. Extract
contact information from query results, and sends the corresponding emails.

– user-contacted(userID) a potential partner accepts the registration into
the communication tool, so this message is broadcasted through all active
initiator agents in order to check if the user belongs to the corresponding
query. In such a case, the user is added to a new negotiation process within
the communication tool.

Initiator agents terminates after a given deadline.
A negotiation process is usually concerned with multi-attribute contracts.

Filtering and ranking agents are used to help the user in the decision-making



process of selecting the best agreement. One of this agent is created for each
negotiation topic. It serves the following services:

– set-preferences(negotiation) the initial message for the agent. Options
and preferences from the negotiation attributes are set up or changed through
this message.

– process(message) the communication tool receives a message from a part-
ner involved in this negotiation, and passes it to the filtering and ranking
agent. This agent computes the utility function of the messages, filters it if
the offer violates the constraints and ranks the negotiations of the process
according to the latest updates.

– ranking a negotiation agent requires a current ranking of the messages in
the negotiation process assigned to the filtering and ranking agent.

These agents are terminated once the negotiation process is completed, with or
without contract.

Negotiation agents help the user in negotiating business contracts in cases
where a fixed set of simple issues, i.e. price, delivery dates, etc, has to be settled.
The negotiator communicates its negotiation strategy to the agent when it is
created. The agent will create request/offer/counter-offer messages to partners
according to this strategy. Negotiation protocols are described in [?]. This process
is fully automatic, so the agent only need to implement the services:

– initiate-negotiation(strategy) this messages starts up the automatic ne-
gotiation process. The agent generates emails to partners, and process their
responds. In case of unexpected conditions, the automatic negotiation termi-
nates, and control is transferred to the user. In order to create the messages,
this agent can consult the filtering and ranking agent, or resource monitoring
agents assigned to the current negotiation process.

– terminate-negotiation the user wishes to regain control of the negotiation,
so this message is send through the communication tool.

The agent is terminated when it receives this last message, or when the negoti-
ation ends.

A company may be involved simultaneously in several negotiation processes.
Resource monitoring agents helps to guard the company resources in order to
avoid over-commitments. One resource monitoring agent is created for each busi-
ness partner, that will continuously monitor the attribute values against the
resource management system in the communication tool.

– initiate-resource-monitoring(userID) this messages starts up the re-
source monitoring process for a given user.

– process-message(message] the agent extracts information from the mes-
sage, and compares it with the information stored in the resource manage-
ment system. In case of over-commitment, it notifies the user by sending an
email.

– terminate-resource-negotiation the user notifies the agent to terminate
the resource monitoring process, so the agent will be deleted.



5 Implementation of agents in JADE

6 implementation

In this section we describe the implementation process in the first integrated
prototype of the SEWASIE system. We recall that some of the components, like
the communication tool, the visualization tool and the MOMIS system were
already implemented as separate systems. Therefore, agent technology serves as
an unifying framework for these existing components. We note that the current
prototype has several SINodes but only one BA, so some interactions between
agents are simplified.

Jade agents are implemented as a set of ”behaviors”. A behavior represents
a task that an agent can carry out, and the platform provides a set of general
behaviors already implemented. In order to make an agent execute the task
implemented by a behavior, it is sufficient to add the behavior object to the
agent´s behaviors list. Behaviors can be added anytime, when the agent starts,
or within other behaviors. An agent can execute several behaviors concurrently.
However, scheduling of concurrent behaviors is not pre-emptive in Jade, but
cooperative. This means that when a behavior is scheduled for execution, its
action method is called and runs until it returns. Therefore, it is the programmer
who defines when an agent switches from the execution of one behavior to the
execution of the next one.

Several behaviors are already implemented in the Jade library[?], ready to be
reused by inheritance and redefinition of its action method. The simpler ones are
the CyclicBehavior which never completes and executes the same actions each
time it is called, and the OneShotBehavior which immediately completes after
it is executed once. Jade also provides the possibility of combining simple behav-
iors together to create complex behaviors. For example, SequentialBehavior
is a composite behavior that executes exactly once its component behaviors, or
the TickerBehavior that executes the action repetitively after waiting a given
period of time. We next show how these behaviors can be used to implement the
Query Agent and the Brokering Agent in the SEWASIE system.

In the implementation of agent we also consider the standard FIPA Inter-
action Protocols. Each type of agent is involved in a limited set of interactions
with other agents, so each one of these interactions is mapped into a standard
protocol. In this way,

Next we describe some implementation issues for the most interesting types
of agents: QA and t BA. In both cases, we first describe the interaction protocol
in which these agents are involved, and then specify the set of behaviors that
are activated along their life cycle.

In order to implement QAs and BAs based on JADE behaviors, we must
take into account that these behaviors need in general to be dynamically cre-
ated and deleted. Therefore, we need a ”deliberative” behavior that does the
control reasoning, deciding when and how the creation of other behaviors is
done. These other behaviors will exhibit a typically ”reactive” implementation:



they are activated when messages are received (the only sensor information SE-
WASIE agents have about their environment), and do some processing actions.
This control architecture for agents is similar to some proposed hybrid architec-
tures for robots[?]. The deliberative behavior is implemented through a subclass
of TickerBehaviour, so it is activated at agent creation and never completes,
being its job to add and delete reactive behaviors in the agent.

6.1 Query Agent

We stated that a QA has only one service, the solve-query service. This service
can be called using the standard FIPA Request interaction protocol [?], being the
initiator agent either a QTA, or a MA. The QA also require the get-mapping
service from BAs, and the solve-query service from SINodes. In these cases,
QA initiates Request interaction protocols, being the participant agent the BA
or the SINode.

In addition to the previously mentioned deliberative behavior, we imple-
mented the QA with the following reactive behaviors:

– a CyclicBehavior for receiving Request messages. The first request message
the agent receives, is the one that is processed by the QA. Further requests
are replied by not-understood messages.

– a SequentialBehavior for implementing query processing. Their sub-behaviors
implement: query parsing, query schema creation, and BA contacting (the
query-BA action in the QA, calling the get-mapping service in the BA).
Some of this behaviors can be reused within the same sequential behavior,
for example in the case of several BA contacting, but this is not currently
available in this prototype. A composite behavior is needed in this case be-
cause normal execution of this actions is too time consuming, blocking the
other behaviors in the agent.

– a CyclicBehavior to wait for the expanded queries from BAs, and, once
they are received, doing the rewriting process and contacting SINodes (the
query-SINode action).

– finally, another CyclicBehavior for processing SINodes responds (the deliver-
result action). Since for default there may be several SINodes contacts, this
behavior is cyclic in order to be able to process all of them.

6.2 Brokering Agent

BAs have to serve several services. For the manage-SINode service, the original
SINode initiates a FIPA Propose Interaction Protocol[?], asking the BA for
permission to be handled. In case of acceptance, the BA finishes the Propose
interaction but also initiates a Subscribe Interaction Protocol with the SINode,
in order to be communicated of every change in the SINode ontology.

As we already mentioned, the get-mapping service is called from QA through
a Request interaction protocol. The get-info-ontology service is also contacted
through Request interaction protocol where the BA plays the participant role.



The receive-ontology service is not implemented since it is not needed in the
current prototype. The following are the reactive behaviors that compose BA:

– a CyclicBehavior for waiting and receiving request from QAs.
– a SequentialBehavior for implementing query expansion and materializa-

tion.
– a CyclicBehavior for waiting, receiving, and solving request for the BA

ontology.
– a CyclicBehavior for waiting, and accepting SINodes to be managed by

this BA.
– a CyclicBehavior for waiting, receiving and processing messages from SIN-

odes communicating changes in their ontologies.

7 Security issues

The architecture we have presented so far has been devoloped to satisfy the
application requirements of the SEWASIE project. It describes how the func-
tionalities of the systems can be modelled and implemented using a multi-agent
system. Besides this design architecture, the deployment of the SEWASIE sys-
tem gives rise to new requirements. Deployment requirements are posed by the
specific installation that we have to set up.

The SEWASIE system is conceived to operate in an environemnt where hosts
usually provide information services, such as running a DBMS. Playing a delicate
role, such machines are usually servers and are subject to security restrictions
in order to guarantee the best possible level of service.

While some choices pertain to specific settings, a general trend we can notice
is the preference by system administrators towards software products that are
compliant with firewalled networks. It is not much about security, but being able
to make available services through a web server. This way, the security policy
can be focussed on the web server functioning, monitoring the traffic on the port
it is listening to.

We thus couple the architecture of the SEWASIE system with a web server,
making provision of a tunneling technique. Tunnelling is a popular technique in
these days, as it allows to expose services on the standard port of a web server.
Client applications can then reach the service by executing an HTTP request.
The web server will redirect the request to the particular service addressed.
Responses are sent following the backward path.

Each host taking part to the SEWASIE system has a deployment infrastruc-
ture like the one depicted in Figure 2:

The Web server acts as gate to the network environment. Messages and
objects to and from an agent container belonging to the platform are HTTP

requests going through the web server. This is made possible because Jade man-
ages remote objects and remote calls using Java RMI [?]. When an RMI server
is activated, a registry to keep track of all (possibly remote) objects registered
is inititated which listen to incoming requests on a given port number. An RMI



Fig. 2. The deployment architecture of a SEWASIE host.



client can call this service in order to remotely connect and use objects. When
an RMI request has to be sent, the client first tries to connect to an RMI server
listenining on the specified host and port. If this request is blocked by a firewall,
the same RMI client tries to invoke the remote method making use of the HTTP
protocol, by sending an HTTP POST message. The endpoint of the communi-
cation is obtained by using the same host address as for the direct connection
on the default web server port 80. The URL is then completed with a call to a
cgi script, passing the port of the RMI server as parameter. The script forwards
the invocation to the RMI server on the specified port. All this is part of the
Java RMI specification (see [?]).

By means of the cgi script, requests are served spawning a new virtual ma-
chine for each invocation. Given the scenario the SEWASIE system addresses,
this represents a performance limitation. It is thus required to refine the archi-
tecture, making available a more sophisticated mecahnism that allows not only
the simple redirection (the continuos line in Figure 2) but also to serve requests
within one single Java virtual machine. Better performance can be reached in-
troducing an application server, in our case a Java servlet container. Instead of
using the cgi script, we can demand to a servlet the management of incoming
requests (the dotted line in Figure 2). This brings into play more flexibility as
we can program how the servlet behaves. Of course, the drawback lies in the
added layer to our software infrastructure, which means a potential weakining
of reliability as more things can go wrong. This represent a tradeoff.

Both solutions respond to the need of firewalled networks. In general, a SE-
WASIE system can be composed by nodes using only a web server and nodes
using a web server and an application server. What differs is how they internally
manage requests.

8 Conclusions

In this paper, we have provided a general description of the SEWASIE system
architecture and of an SINode. We have then detailed how the system has been
designed and implemented using agent technology. We have in fact shown the
different types of agents and how they are organised. While tackling implemen-
tation issues, we have made some observation on the deployment architecture of
the SEWASIE system.

Acknowledgements
This work is supported in part by the 5th Framework IST programme of the Eu-
ropean Community through project SEWASIE within the Semantic Web Action
Line. The SEWASIE consortium comprises in addition to the author’ organi-
zation (Sonia Bergamaschi is the coordinator of the project), the Universities
of Aachen RWTH (M. Jarke), Roma La Sapienza (M. Lenzerini, T. Catarci),
Bolzano (E. Franconi), as well as IBM Italia (G. Vetere), Thinking Networks
AG (C. Engels) and CNA (A. Tavernari) as user organisation.


