

New Trends

Wise 2009 – Poznan (PL)

Pay as you go approach [Madhavan et al 2007]

- There is no single mediated schema over which users pose queries.
 - There are sets of schemata that are clustered into topics
 - Semantic mappings are typically approximate
 - Queries are typically posed as keywords, respecting the main search paradigm on the Web, and are *routed* to the relevant sources
- The pay-as-you-go principle states that the system needs to be able to incrementally evolve its *understanding* of the data it encompasses as it runs
- Several automated methods to bootstrap the understanding of underlying data
 - the results of all these automated methods should be verified by humans, who can quickly correct the errors
 - At web scale, it is impossible for humans to inspect all of these results. It is crucial that we leverage as much as possible feedback we can get from users
- To support all of the above, a PAYGO-based system needs to model uncertainty at all levels:
 - queries,
 - mappings,
 - underlying data.

Wise 2009 – Poznan (PL)

- The proposal is customized for structured data on the web
- The authors identify three scenarios:
 - The deep web
 - Google base
 - Annotation schemas
- The integration at the web-scale is different from the usual scenario: data on the web is about everything \rightarrow there is no domain knowledge that may be used, heterogeneity is very high

Traditional Data Integration	PAYGO Data Integration
Mediated Schema	Schema clusters
Schema mappings	Approximate mappings
Structured queries	Keyword queries with query routing
Query answering	Heterogeneous result ranking

Wise 2009 - Poznan (PL)

Onto1

<u>L. Po</u>, S. Sorrentino, S. Bergamaschi, D. Beneventano – *Lexical Knowledge Extraction: an Effective Approach to Schema and Ontology Matching, Eckm 2009* Wise 2009 – Poznan (PL) Università di Modena e Reggio Emilia & Milano Bicocca

- Elements of schemata/ontologies are labelled by natural language expressions. Natural language labels provide a rich connection between formal objects (e.g. classes and properties) and their intended meanings
- It is necessary to address the problem of how the data are "labelled", i.e. understanding the meaning behind the names denoting schemata/ontology elements

What role Lexical Knowledge plays in data integration and ontology engineering?

- Matching techniques aim at finding correspondences between semantically related entities of different schemata/ontologies
- We propose a matching technique based on Automatic Lexical Annotation:
 - Automatic Lexical Annotation of schemata/ontologies is performed
 - probabilistic lexical relationships are discovered

- Annotation is a piece of information added to a book, document, online record, video, or other data
- Lexical Annotation is an annotation performed w.r.t. a Semantic Resource such as a thesaurus (for example Roget) or a Semantic Lexicon (like WordNet)
- Each annotation has the property to own a lexical description. *Lexical Annotation* differs from the *Ontology-based Annotation* where annotation is w.r.t. an ontology (top ontology or domain ontology)

- Lexical Annotation
 - assigns meanings to class and attribute names w.r.t. a semantic resource (WordNet)
 - derives relationships among terms of the sources

		\sim		
		Word form		
	Meaning (synset)	Book	Volume	Publication
Is a kind of	a written work or composition that has been published (printed on pages bound together)			
	physical objects consisting of a number of pages bound together; "he used a large book as a doorstop"	\checkmark	\checkmark	
	a copy of a printed work offered for distribution			

lexical relationships extracted

Book	SYN	Volume
Book	RT	Publication

Wise 2009 – Poznan (PL)

PWSD - Probabilistic Word Sense Disambiguation Algorithm [Bergamaschi et al. ECKM'09]

- Automatic lexical annotation is performed by the use of Word Sense
 Disambiguation (WSD) techniques
- To maximize annotation accuracy we need to employ a variety of WSD algorithms
- **PWSD** is a probabilistic method to combine the results of a set of WSD algorithms through the use of the Dempster's rule of combination (Shafer, 1976)
- PWSD automatically annotates terms of data sources and associates each annotation with a probability value that indicates the reliability level of the annotation
- PWSD has been implemented in the ALA (Automatic Lexical Annotation) tool [Bergamaschi et al. ER' 09]

Wise 2009 – Poznan (PL)

By the use of PWSD, an automatic lexical annotation is performed over all the source elements

Example of application of PWSD (2)

At the end of the annotation process, each source element has been associated to one or more probabilistic annotations

Wise 2009 – Poznan (PL)

NeP B Example of lexical relationships extraction (1)

- From the lexical annotations, lexical relationships are derived
- The reliability assigned to the lexical relationships between two terms is the product of the probability value of the annotations under consideration for a term

P(rel A,B)= P(a#i) x P(b#j)

Lexical Relationships	Probability
Onto1.Publication SYN Onto2.Book.issue	0.44
Onto1.Book SYN Onto2.Book	0.59
Onto1.Book.edition NT Onto2.Book.issue	0.28
Onto1.Book.title NT Onto2.Book.heading	0.44
Onto1.Book.volume SYN Onto2.Book	0.14
Onto1.Booklet NT Onto2.Book	0.67
Onto2.Book NT Onto1.Publication	0.67
Onto2.Chapter RT Onto1.Book	0.54
Onto2.Chapter RT Onto1.Publication	0.54

•The result of lexical annotation is strongly affected by the presence of these non-dictionary words in the schema (compound nouns, acronyms, abbreviations etc.) *i.e.* not be present in the lexical resource WordNet.

•Schema Labels Normalization: the reduction of the form of each label to some standardized form that can be easily recognized: in our case the process of abbreviations expansion and CNs annotation

• Improves the schema matching process by reducing the number of false positive/false negative lexical relationships

a- Discovered relationships without Schema Normalization

b-Discovered relationship swith Schema Normalization

Sorrentino, Bergamaschi, Gawinecki, Po – Schema Normalization for Improving Schema Matching- ER' 09

27/11/2009Wise 2009 – Poznan (PL) 8/10/2009 Università di Modena e Reggio Emilia Università di Milano Bicocca