
RELEVANT VALUES: NEW METADATA TO PROVIDE INSIGHT ON
ATTRIBUTE VALUES AT SCHEMA LEVEL

Sonia Bergamaschi, Mirko Orsini
Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia, Italy
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Abstract: Research on data integration has provided languages and systems able toguarantee an integrated intensional
representation of a given set of data sources. A significant limitation common to most proposals is that only
intensional knowledge is considered, with little or no consideration for extensional knowledge.
In this paper we propose a technique to enrich the intension of an attribute witha new sort of metadata: the
“relevant values”, extracted from the attribute values. Relevant valuesenrich schemata with domain knowl-
edge; moreover they can be exploited by a user in the interactive process of creating/refining a query. The
technique, fully implemented in a prototype, is automatic, independent of theattribute domain and it is based
on data mining clustering techniques and emerging semantics from data values. It is parametrized with vari-
ous metrics for similarity measures and is a viable tool for dealing with frequently changing sources, as in the
Semantic Web context.

1 Introduction

Integration of data from multiple sources is one of
the main issues facing the database and artificial intel-
ligence research communities. A common approach
for integrating information sources is to build a me-
diated schema as a synthesis of them. By managing
all the collected data in a common way, a mediated
schema allows the user to pose a query according to
a global perception of the handled information. A
query over the mediated schema is translated into a set
of sub-queries for the involved sources by means of
automatic unfolding-rewriting operations taking into
account the mediated and the sources schemata. Re-
sults from sub-queries are finally unified by data rec-
onciliation techniques (see (Lenzerini, 2002; Ben-
eventano and Bergamaschi, ) for an overview).

Research on data integration has provided lan-
guages and systems able to guarantee an integrated
representation of a given set of data sources. A sig-
nificant limitation common to most proposals is that
only intensional knowledge is considered, with little
or no consideration for extensional knowledge.

In this paper, we describe a technique for provid-

ing metadata related to attribute values. Such meta-
data represent a synthesized extensional knowledge
emerging from the attribute values. We call these
metadata “relevant values” as they provide the users
a synthetic description of the values of the attribute
which refer to by representing with a reduced number
of values its domain. We claim that such metadata are
useful when querying an integrated database, since
integration puts together in the same global class a
number of localsemantically similarclasses coming
from different sources and a set of global attributes
which generalize the local classes. Consequently, the
name/description of a global class/global attribute is
often generic and thus significantly limiting the effec-
tiveness of querying. Let us suppose, for instance,
that the user has a good knowledge of a single source,
say “S”, and that she/he is interested in items whose
global attribute “A” contains the word “x”, as of ter-
minology of source “S”. The user could completely
miss the fact that in source “T” the word “y” refers
to a very similar attribute value, and therefore a query
with target “x” would return only a partial result w.r.t.
the contents of the global class. Moreover, ignoring
the values assumed by a global attribute may gener-



ate meaningless, too selective or empty queries. On
the other hand, knowing all the data collected from a
global class is infeasible for a user: databases contain
large amount of data which a user cannot deal with. A
metadata structure derived from an analysis of the at-
tribute extension could be of great help in overcoming
such limitation.

This work is done in the context of the MOMIS
(Mediator envirOnment for Multiple Information
Sources) project1 (Bergamaschi et al., 2001), a frame-
work to perform information extraction and integra-
tion from both structured and semi-structured data
sources, plus a query management environment able
to process incoming queries through the navigation of
the mediated schema. The MOMIS integration pro-
cess gives rise to a Global Virtual View (GVV) in the
form of Global Classes and global attributes of the a
set of data sources.

In (Beneventano et al., 2003), we proposed a par-
tial solution to the semantic enrichment of a GVV
by providing a semantic annotation of all the Global
Classes of the GVV with respect to the WordNet lex-
ical database2, and thus providing each term with a
well-understood meaning. Relevant Values will se-
mantically enrich a GVV, since they provide semantic
information about the data sources the GVV refers to.
Moreover, in (Beneventano et al., 2006) a first heuris-
tic for calculating relevant values was described.

In this paper we improve the approach proposed
in (Beneventano et al., 2006), by providing a flexi-
ble parametric technique to deal with string attributes.
It is not a severe limitation, as: (1) data coming
from web-site wrappers are generally represented as
strings; (2) several techniques have been developed
in literature for clustering numeric values where it
is easy to define element orderings (see (Jain et al.,
1999) for a survey). The method was implemented
in a prototype calledRELEVANT(RELEvant VAlue
geNeraTor) we describe in section 3.

The outline of the paper is the following: next sec-
tion defines the technique to elicit relevant values for a
selected attribute, section 3 describe the implemented
prototype and section 4 describes how relevant values
may be exploited for querying data sources. Finally
section 5 sketches out some conclusions and future
works.

1See http://www.dbgroup.unimo.it for more publica-
tions about the project.

2http://wordnet.princeton.edu/

2 Eliciting Relevant Values from
Data

In the context of the data integration, there are sev-
eral models for representing ontologies. Without loss
of generality, let us refer to the concepts of MOMIS.
The GVV built with MOMIS is composed of Global
Classes (i.e. OWL Classes), with Global Attributes
(GA), i.e. OWL datatype attributes . Our goal is to ex-
tract the relevant values of a GA. Each relevant value
is described by a relevant value name and a set of val-
ues of the attribute domain.

Definition 1 Given a class C and one of its attributes
At, a relevant value for it, rvAt is a pair rvAt =
〈rvnAt

,valuesAt〉. rvnAt is the name of the relevant
value, while valuesAt is the set of values referring to
it, i.e. valuesAt ⊆ πAt(C).

The set of the relevant values ofAt, RVS =
{rv1, rv2, . . . , rvn} has two attributes : 1)
Sn

i=1valuesi = πAt(C) and 2) rvni 6= rvn j∀i 6= j.
For simplicity, in the following we will drop theAt
index.

Now we should answer two questions: how can
we cluster the values of the domain in order to put to-
gether in a relevant value a set of values which are
strongly related? How can we choose the relevant
value names? The first question will be answered by
means of data mining clustering techniques, adapted
to the problem on hand; the second will require the
intervention of the integration designer, but we will
provide an effectiveassistant.

2.1 Adding semantics: the root elements

Nomina sunt consequentia rerum
Giustiniano, Institutiones, Liber II, 7, 33

On the basis of an analysis of manufacturing
databases, we observed that it is frequent to have
string domains with values composed by many words,
also with abbreviations. We observed also that the
same word, or group of words, may be further qual-
ified with multiple words in many ways. For exam-
ple, the attribute describing a kind of production for a
mechanical enterprise may contain the value “Mould”
and the values “Mould ejectors, Mould engineering,
...”. Thus, it is possible to devise a lattice of similar
values. The lattice semantics has to be verified by the
integration designer for the specific attribute domain,
but, in our experience, it is sound.

Our idea is to exploit the semantics expressed by
such containment for building clusters of values. The

3Names are consequences, or, one might say, the expres-
sions, of things.



proposed technique finds out the “relevant” words in-
cluded in attribute values and uses them as roots to
build a lattice over the flat set of values. The lattice
will be used together with the usual syntactic cluster-
ing methods, in order to effectively group values.

Definition 2 A root element re = 〈ren,values〉 is
a relevant value computed by means of a func-
tion based on string containment: Contains(X,Y) =
true iff stem(X) ⊇ stem(Y), where X and Y are sets
of words.

A root element namerenj is defined as a value
of the domain such that it does not contain any other
value of the domain, formally:
ren∈ πAt(C) : 6 ∃x∈ πAt(C),Contains(ren,x), ren 6= x.

The values of a root element are the values of the do-
main containing the root element name, i.e.values=
{v∈ πAt(C) : Contains(v, ren)}.

The definition implies that the set of all the root
elements is closed w.r.t. the domain, i.e., if there ex-
ists m root elements,

Sm
j=1valuesj = πAt(C). RESis

the set of all the root elements of a property.
Our claim, supported by experience, is that root

elements do bear semantics, since they derive directly
from the linguistic choices of people who populated
the data source.

2.2 Relevant Value Sets

Like most cluster tasks with non-numeric attributes,
the problems are related to find an effective repre-
sentation of the points (i.e. the attribute values) in
a space, and to devise a suitable similarity function
to be exploited by the clustering algorithm. The tech-
nique we propose builds a binary representation of the
attribute values, by mapping each value into the uni-
verse of words generated considering all the values of
the property.

At present, we implemented two ways to build
some structure upon the flat set binary representation:
1) the semantics ofcontainment, expressed by the root
elements defined above; and 2) the semantics ofclus-
ters, mapping the words of attribute values in an ab-
stract space, and defining a syntactic similarity func-
tion in such space.

The similarity measures computed with both the
semantics are then used by a clustering algorithm (in
RELEVANTthe user may generate both partitions and
overlapped clusters). The algorithm produces clusters
of valueswhich are the Relevant Values set.

2.3 Relevant Value Names

The name of a relevant valuervn has to be representa-
tive of the elements belonging to thevaluesset associ-

ated. Consequently, let us consider the set of relevant
valuesRVSassociated to a specific attributeAt. The
set ofRVN= {rvn1, ..., rvnn} provides the integra-
tion designer with a synthesized knowledge about the
At contents.

A relevant value name is typically the most gen-
eral value among thevalues, i.e. given a generic
rvi = 〈rvni ,valuesi〉, rvni is the most general value of
valuesi . The simplest way to detect a list ofrvni can-
didates is to use theContainsfunction: the integra-
tion designer may select the most appropriate among
them.

In particular, let us consider arvi ∈ RVS. The
list of rvni candidates is calculated as follows: let
s̄= {v∈ valuesi | Contains(v′,v) = true , v 6= v′,and 6
∃v′′ ∈ valuesi | Contains(v,v′′) = true v 6= v′′}. If s̄
is a singleton, thenrvni = s̄, otherwise the integration
designer has to select the name among the elements
of s̄, or introduce another name.

3 The RELEVANT prototype

Figure 1 shows theRELEVANTfunctional archi-
tecture, which is organized into four blocks:

1. Data pre-processing: a binary representation of
the values of an attribute is obtained with a ma-
trix where the columns represent the universe of
words (the extension of the property) and each
row represents the mapping of an attribute value.

2. Similarity Computation : two tasks are enabled:
the selection of the metrics for computing the sim-
ilarity between pairs of attribute values and the
selection of the semantics to be used: the seman-
tics of containment, the semantics of clusters or a
combination of both.

3. Relevant Values elicitation: this module imple-
ments some clustering algorithms to compute the
set of relevant values on the basis of the choices
made at step 2.

4. Validation : we implemented some standard tech-
niques to evaluate cluster quality. At present, ad-
ditional work and experiments are necessary go
further the simple evaluation, so as to provide ef-
fective assistance to the designer in the critical
task of parameter configuration.

3.1 Step 1: Binary Representation of
attribute values

The starting point of the process is theMatching Table
MT, that is a binary representation of the values of a
property, obtained as follows:
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Figure 1: TheRELEVANTfunctional architecture

1. LetW = πAt(C) = {wi}, the extension ofAt. Each
stringwi is found in at least one value and is a set
of elementary words, saywi = {wi

k}.

2. Frominformation retrievalwe import the concept
of stemming, and we use astemming operatorfor
words, such thatstem(w) = a, wherea is either
a stem form ofw or /0, if w is a stop–word. For
string and sets of strings the definition of stem()
is easily extended:stem(s) = {stem(wi)} for s=
{wi} andstem(S) = {stem(si)} for S= {si}.

3. The universe of words considered is then

U =
[

wi∈W

stem(wi) = {ak},

whereak are numbered in lexicographic order.

4. The binary representation ofAt is described by
means of the rows ofMT, where

MT = ‖mtxy‖|W|×|U |,mxy=

{

1 if ay ∈ stem(wx)
0 otherwise

MT is typically sparse: for each row there is a
number of elements different from zero that is equal
to the number of words contained in the associated
property, except for the stop–words. Our approach
applies clustering techniques toMT to obtain sets of
similar values and gather them in a single relevant
value.

3.2 Step 2: Similarity computation

The binary representation is used to calculate similar-
ity between attribute values. The computed similarity
is then exploited by a clustering algorithm to create
sets ofvalues. Two tasks are executed in this step:
the similarity measure and the selection of the kind of
“exploited” semantics.

Concerning the first task, we consider some well-
known similarity measures collected in (Luke, ) (e.g.:
Simple matching, Jaccard,...). The choice of the simi-
larity measure is orthogonal w.r.t. the clustering algo-
rithm, andRELEVANTsees it as a parameter, which
can be chosen by the integration designer and changed
to compare different settings. We build the “Affin-
ity Matrix” AM = ‖amhk‖|W|×|W| whereamhk is the
similarity between themth andmtk rows of the ma-
trix MT, binary representation of the original values
ah andak ∈ At.

Concerning the second task, it is trivial to show
that syntactically similar values may refer to very dif-
ferent objects: consequently the use of the semantics
of clusters may produce improper clusters. On the
other hand, adding semantics to each attribute value
is a time-consuming and error-prone operation: the
high number of values and the frequency of update
discourage a manual processing as required by the
usual techniques (e.g.: by annotating each value ac-
cording to a reference ontology).

Our choice is to introduce a new technique that
grasps the semantics of the values containment (ex-
pressed by the Root Elements) working in conjunc-
tion with the approach based on the above defined se-
mantics of cluster which exploits the syntactic sim-
ilarity. The designer may balance the relevance of
the two kind of semantics by means of specific co-
efficients.

To exploit such semantics, we introduce the
Matching Table for Root elementsMTR, a bi-
nary matrix that shows the membership of the at-
tribute values to the Root Elements. In par-
ticular, MTR = ‖mtrhk‖|W|×|SRE|, where mtrhk =
{

1 if ah ∈ valuesk
0 otherwise
Therefore, a new matrix, Affinity Matrix for Root

elements (AMR), is built.



AMR= ‖amrxy‖|W|×|W| represents the similarity mea-
sure between two elementsmtrx andmtry. This mea-
sure is computed by means of the metric selected by
the integration designer.

Finally the results ofAM and AMR are linearly
combined into the Global Affinity MatrixGAM =
‖gamhk‖|W|×|W|. In particular,gamhk = lcy× amhk +
lcm× amrhk, where the values oflcy and lcm are
chosen by the designer such thatlcy, lcm ∈ [0,1] and
lcy + lcm = 1.

3.3 Step 3: Relevant values elicitation

The prototype implements two different clustering al-
gorithms: a classical agglomerative hierarchical clus-
tering algorithm performs a partition of the values set,
a second algorithm generates overlapping clusters (a
variation of the algorithm in (Cleuziou et al., 2004) is
implemented).

The hierarchical clustering algorithm. A hi-
erarchical clustering algorithm classifies elements
into groups at different levels of affinity, forming a
tree (Everitt, 1993). The hierarchical clustering pro-
cedure is applied to the matrixGAM. Once the affin-
ity tree has been built, clusters are interactively com-
puted on the basis of the numerical affinity values in
the affinity tree and a threshold-based mechanism for
cluster selection specified by the designer. High val-
ues of threshold return small, highly fragmented clus-
ters. By decreasing the threshold value, bigger clus-
ters are generated.

The overlapping clustering algorithm.The algo-
rithm is based on the technique described in (Cleuziou
et al., 2004) and it is based on the idea of extending
some sets of values given as input with other data set
elements. In particular, the algorithm starts from a set
of polesP = {P1, ...,Pl} wherePi is a subset of the
considered values set andPi ∩Pj = {} ∀i 6= j. Then,
a membership degree is calculated for each elements
of the values set with respect to each pole. Finally, by
means of a specific similarity measure evaluating the
membership degrees, each element is assigned to one
or more poles similar to it.

It is trivial to show that the results are highly de-
pendent on the heuristic used for calculating the ini-
tial set of poles. Using the semantics available in our
specific model, we implemented two techniques for
calculating poles: the first one considers the results
of the hierarchical clustering as poles, the second one
considers the root elements as poles. The results are
different, as shown below. In the first case the simi-
larity measures assume a key role; in the second case,
no similarity measure is computed since the algorithm
exploits only the containment property.

3.4 Step 4: Validation

We implemented a set of standard quality measures,
to support the designer in the tuning activity. In par-
ticular, the tool provides:
• countRV: number of relevant values obtained for

the configuration. This value depends on the
threshold set by the integration designer;

• average, maxelements, variance: the descrip-
tive statistics over the number of elements. In
particular, average expresses the average num-
ber of values belonging to a relevant value,
max elements indicates the dimension of the
largest cluster and the variance shows the vari-
ance degree among the dimensions of the clusters.
For values set equally distributed on the domain
max elements is close to the average value and
variance is low;

• count single: number of relevant values with a
single element. Count single indicates a low num-
ber if the values set is equally distributed on the
domain;

• silhouette (Rousseeuw, 1987)(only if the hier-
archical clustering algorithm is used): calculates
a width for each cluster based on the comparison
of its tightness and separation. If the silhouette
value is close to 1, it means that the object iswell-
clusteredand has been assigned to a appropriate
cluster. If the silhouette value is close to-1, it
means that the object isnot well-clustered;

• overlapping degree(only if the overlapping clus-
tering algorithm is used): indicates number of el-
ements which are in more than one relevant value.

4 Querying with Relevant Values

Thanks to the knowledge provided by relevant
values, the user has two new ways of formulating
queries, according to two scenarios.

1. The user has only a general idea of what she/he is
searching for and composes a query predicate for
instance by selecting a valuex among the relevant
value names. Note that instead of using the clas-
sical equality orLIKE operator, we should con-
sider a new one, sayRELATED TO, taking into ac-
count the mapping between relevant value names
and values. It is beyond the scope of this paper to
discuss such operator, but a naive implementation
could be to substituteAt RELATED TO x wherex is
a relevant value name, withAt IN (SELECTvalues
FROM METADATA.At WHERE rvn=’x’)



To give a flavor of the novelty of the approach,
we should observe that: (a) The user seldom has
a deep knowledge of all the integrated data, so the
list of the relevant value names, elicited from data,
is of great help in providing insight on the value
domain, and in assisting query formulation; (b)
w.r.t. the base SQL predicateAt LIKE ′%x%′ we
propose a rewriting of the query which is guided
by the semantics of clustering and string contain-
ment, and uses also, as base tools, the information
retrieval techniques of stemming and stop words.

2. The user knows that the result must include tu-
ples satisfying the predicateAt = v, but she/he is
aware that, due to the integration process, tuples
with valuesv′ similar to vmight also be relevant.
In this case the query could be transformed in a
query of type 1 above by substitutingAt = v with
At RELATED TO rvn, wherev ∈ values(rvn), or
possibly with a disjunction of predicates like that,
if overlapping clustering is used.

5 Conclusions and future work

In this paper we defined a new type of metadata,
the relevant values of an attribute . These values are
provided to the user in order to increase his sources
knowledge. We addressed several critical issues with
the aim of efficiency and effectiveness, in different
domains with different updating frequencies. In par-
ticular, the method is based on data analysis: if data
change, the relevant values have to be updated. As
usual in data analysis, the startup phase requires the
setting of several critical parameters. Nevertheless,
for a given parameter setting, the developed technique
is able to calculate the relevant value set without any
human intervention. Moreover the parameters and
similarity metric selection determine the quality of the
relevant value set. Therefore, the integration designer
has to carefully evaluate the results and eventually
change some parameter setting in order to improve
the quality result.

The experimental results evaluated by means of
RELEVANTshow that the developed technique may
produce results close to the relevant values provided
by a domain expert. The best results are obtained by
applying the overlapping clustering algorithms.

Future work will be addressed on improving the
relevant values selection by automatically calculating
some indicators for evaluating the quality of the rel-
evant values. In this way, the designer may be sup-
ported in the parameters selection. Moreover, we will
study the problem of the generation of the relevant
value set for multiple attributes and that of quantita-

tive evaluation of cluster quality in the overlapping
case.
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